869 resultados para "new media dynamics"
Resumo:
In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.
Assessing and understanding the impact of stratospheric dynamics and variability on the earth system
Resumo:
Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.
Resumo:
A new parameterisation is described that predicts the temperature perturbations due to sub-grid scale orographic gravity waves in the atmosphere of the 19 level HadAM3 version of the United Kingdom Met Office Unified Model. The explicit calculation of the wave phase allows the sign of the temperature perturbation to be predicted. The scheme is used to create orographic clouds, including cirrus, that were previously absent in model simulations. A novel approach to the validation of this parameterisation makes use of both satellite observations of a case study, and a simulation in which the Unified Model is nudged towards ERA-40 assimilated winds, temperatures and humidities. It is demonstrated that this approach offers a feasible way of introducing large scale orographic cirrus clouds into GCMs.
Resumo:
Boosted by a proliferation in metal-detected finds, categories of personal adornment now constitute a vital archaeological source for interpreting Viking-age cultural interaction in the North Sea region. Previous research in England has explored the potential of this metalwork in relation to the formation of ‘Anglo-Scandinavian’ identity, but without due consideration of a wider spectrum of cultural influences. This article redresses the balance by shifting attention to twenty-eight belt fittings derived from richly embellished baldrics, equestrian equipment, and waist belts manufactured on the Frankish continent during the period of Carolingian hegemony in the later eighth and ninth centuries ad. The metalwork is classified and then contextualized in order to track import mechanisms and to assess the impact of Carolingian culture on the northern peripheries of the Frankish empire. The main conclusion is that the adoption, adaptation, and strategic manipulation of Carolingian/northern Frankish identity formed an embedded component of cultural dynamics in Viking-age England, scrutiny of which sheds new light on patterns of interconnectivity linking peoples of the North Sea world.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
In Listeria monocytogenes the alternative sigma factor σB plays important roles in both virulence and stress tolerance. In this study a proteomic approach was used to define components of the σB regulon in L. monocytogenes 10403S (serotype 1/2a). Using two-dimensional gel electrophoresis and the recently developed isobaric tags for relative and absolute quantitation technique, the protein expression profiles of the wild type and an isogenic ΔsigB deletion strain were compared. Overall, this study identified 38 proteins whose expression was σB dependent; 17 of these proteins were found to require the presence of σB for full expression, while 21 were expressed at a higher level in the ΔsigB mutant background. The data obtained with the two proteomic approaches showed limited overlap (four proteins were identified by both methods), a finding that highlights the complementarity of the two technologies. Overall, the proteomic data reaffirmed a role for σB in the general stress response and highlighted a probable role for σB in metabolism, especially in the utilization of alternative carbon sources. Proteomic and physiological data revealed the involvement of σB in glycerol metabolism. Five newly identified members of the σB regulon were shown to be under direct regulation of σB using reverse transcription-PCR (RT-PCR), while random amplification of cDNA ends-PCR was used to map four σB-dependent promoters upstream from lmo0796, lmo1830, lmo2391, and lmo2695. Using RT-PCR analysis of known and newly identified σB-dependent genes, as well as proteomic analyses, σB was shown to play a major role in the stationary phase of growth in complex media.
Organisational semiotics methods to assess organisational readiness for internal use of social media
Resumo:
The paper presents organisational semiotics (OS) as an approach for identifying organisational readiness factors for internal use of social media within information intensive organisations (IIO). The paper examines OS methods, such as organisational morphology, containment analysis and collateral analysis to reveal factors of readiness within an organisation. These models also help to identify the essential patterns of activities needed for social media use within an organisation, which can provide a basis for future analysis. The findings confirmed many of the factors, previously identified in literature, while also revealing new factors using OS methods. The factors for organisational readiness for internal use of social media include resources, organisational climate, processes, motivational readiness, benefit and organisational control factors. Organisational control factors revealed are security/privacy, policies, communication procedures, accountability and fallback.
Resumo:
Volume determination of tephra deposits is necessary for the assessment of the dynamics and hazards of explosive volcanoes. Several methods have been proposed during the past 40 years that include the analysis of crystal concentration of large pumices, integrations of various thinning relationships, and the inversion of field observations using analytical and computational models. Regardless of their strong dependence on tephra-deposit exposure and distribution of isomass/isopach contours, empirical integrations of deposit thinning trends still represent the most widely adopted strategy due to their practical and fast application. The most recent methods involve the best fitting of thinning data using various exponential seg- ments or a power-law curve on semilog plots of thickness (or mass/area) versus square root of isopach area. The exponential method is mainly sensitive to the number and the choice of straight segments, whereas the power-law method can better reproduce the natural thinning of tephra deposits but is strongly sensitive to the proximal or distal extreme of integration. We analyze a large data set of tephra deposits and propose a new empirical method for the deter- mination of tephra-deposit volumes that is based on the integration of the Weibull function. The new method shows a better agreement with observed data, reconciling the debate on the use of the exponential versus power-law method. In fact, the Weibull best fitting only depends on three free parameters, can well reproduce the gradual thinning of tephra deposits, and does not depend on the choice of arbitrary segments or of arbitrary extremes of integration.
Resumo:
Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.
Resumo:
With the increasing awareness of protein folding disorders, the explosion of genomic information, and the need for efficient ways to predict protein structure, protein folding and unfolding has become a central issue in molecular sciences research. Molecular dynamics computer simulations are increasingly employed to understand the folding and unfolding of proteins. Running protein unfolding simulations is computationally expensive and finding ways to enhance performance is a grid issue on its own. However, more and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. This paper describes efforts to provide a grid-enabled data warehouse for protein unfolding data. We outline the challenge and present first results in the design and implementation of the data warehouse.
Resumo:
new rheology that explicitly accounts for the subcontinuum anisotropy of the sea ice cover is implemented into the Los Alamos sea ice model. This is in contrast to all models of sea ice included in global circulation models that use an isotropic rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. The anisotropic rheology provides a subcontinuum description of the mechanical behavior of sea ice and accounts for a continuum scale stress with large shear to compression ratio and tensile stress component. Results over the Arctic of a stand-alone version of the model are presented and anisotropic model sensitivity runs are compared with a reference elasto-visco-plastic simulation. Under realistic forcing sea ice quickly becomes highly anisotropic over large length scales, as is observed from satellite imagery. The influence of the new rheology on the state and dynamics of the sea ice cover is discussed. Our reference anisotropic run reveals that the new rheology leads to a substantial change of the spatial distribution of ice thickness and ice drift relative to the reference standard visco-plastic isotropic run, with ice thickness regionally increased by more than 1 m, and ice speed reduced by up to 50%.
Resumo:
Many global climate models (GCMs) have trouble simulating Southern Annular Mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve our understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy-mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary scale waves, in particular zonal wavenumber 3, is found in a localized region in the south west Pacific. It cancels a large proportion of the positive feedback by synoptic and smaller scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the CMIP-5 models confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.
Resumo:
In traditional and geophysical fluid dynamics, it is common to describe stratified turbulent fluid flows with low Mach number and small relative density variations by means of the incompressible Boussinesq approximation. Although such an approximation is often interpreted as decoupling the thermodynamics from the dynamics, this paper reviews recent results and derive new ones that show that the reality is actually more subtle and complex when diabatic effects and a nonlinear equation of state are retained. Such an analysis reveals indeed: (1) that the compressible work of expansion/contraction remains of comparable importance as the mechanical energy conversions in contrast to what is usually assumed; (2) in a Boussinesq fluid, compressible effects occur in the guise of changes in gravitational potential energy due to density changes. This makes it possible to construct a fully consistent description of the thermodynamics of incompressible fluids for an arbitrary nonlinear equation of state; (3) rigorous methods based on using the available potential energy and potential enthalpy budgets can be used to quantify the work of expansion/contraction B in steady and transient flows, which reveals that B is predominantly controlled by molecular diffusive effects, and act as a significant sink of kinetic energy.