932 resultados para withdrawal
Resumo:
Hypersensitivity of pain pathways is considered a relevant determinant of symptoms in chronic pain patients, but data on its prevalence are very limited. To our knowledge, no data on the prevalence of spinal nociceptive hypersensitivity are available. We studied the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity in 961 consecutive patients with various chronic pain conditions. Pain threshold and nociceptive withdrawal reflex threshold to electrical stimulation were used to assess pain hypersensitivity and spinal nociceptive hypersensitivity, respectively. Using 10th percentile cutoff of previously determined reference values, the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity (95% confidence interval) was 71.2 (68.3-74.0) and 80.0 (77.0-82.6), respectively. As a secondary aim, we analyzed demographic, psychosocial, and clinical characteristics as factors potentially associated with pain hypersensitivity and spinal nociceptive hypersensitivity using logistic regression models. Both hypersensitivity parameters were unaffected by most factors analyzed. Depression, catastrophizing, pain-related sleep interference, and average pain intensity were significantly associated with hypersensitivity. However, none of them was significant for both unadjusted and adjusted analyses. Furthermore, the odds ratios were very low, indicating modest quantitative impact. To our knowledge, this is the largest prevalence study on central hypersensitivity and the first one on the prevalence of spinal nociceptive hypersensitivity in chronic pain patients. The results revealed an impressively high prevalence, supporting a high clinical relevance of this phenomenon. Electrical pain thresholds and nociceptive withdrawal reflex explore aspects of pain processing that are mostly independent of sociodemographic, psychological, and clinical pain-related characteristics.
Resumo:
The deformation behavior of atomically clean, nanometer sized tungsten / gold contacts was studied at room temperature in ultra-high vacuum. An instrument that combines atomic force microscopy (AFM), scanning tunneling microscopy (STM), and field ion microscopy (FIM) into a single experimental apparatus was designed, constructed, and calibrated. A cross-hair force sensor having a spring constant of - 442 N/m was developed and its motion was monitored during indentation experiments with a differential interferometer. Tungsten tips of controlled size (12.8 nm < tip radius < 2 1.6 nm) were first shaped and characterized using FIM and then indented into a Au (1 10) single crystal to depths ranging from 1.5 nrn to 18 nm using the force sensor. Continuum mechanics models were found to be valid in predicting elastic deformation during initial contact and plastic zone depths despite our small size regime. Multiple discrete yielding events lasting < 1.5 ms were observed during the plastic deformation regime; at the yield points a maximum value for the principal shear stress was measured to be 5 + 1 GPa. During tip withdrawal, "pop-out" events relating to material relaxation within the contact were observed. Adhesion between the tip and sample led to experimental signatures that suggest neck formation prior to the break of contact. STM images of indentation holes revealed various shapes that can be attributed to the (1 1 1 ) (1 10) crystallographic slip system in gold. FIM images of the tip after indentation showed no evidence of tip damage
Resumo:
Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^
Resumo:
Our national focus and emphasis on the promotion of healthy behavior choices regarding tobacco and other drugs continues to target adolescents. Multiple studies have shown that adolescence is the optimum period for the prevention of substance use initiation as life-long patterns of health behaviors are established during this critical developmental stage. Tobacco use is associated with an increase in morbid and mortal health conditions of which prevalence increases throughout the lifespan. Attention to the antecedents of preventable health conditions aims to modify the risks and identify health promotion factors. Modifying antecedent factors for tobacco initiation in youth and identifying protective factors for successful smoking cessation has major public health implications across the lifespan. Of foremost interest are those risk factors and resultant behaviors that predict a youth's probability of initiating cigarette use and their cessation of cigarette use. Specifically, this dissertation supports previous results identifying intervention variables on the initiation/cessation continuum model especially with the established predictors of smoking (decisional balance and susceptibility) and with more recently identified predictors of smoking (nicotine dependence and withdrawal symptoms) in current and former smokers in a sample of high school students in Austin and Houston, Texas. These results offer insight for the development of appropriate intervention program strategies for our youth. ^
Resumo:
Background. There is currently a push to increase the number of minorities in cancer clinical trials in an effort to reduce cancer health disparities. Overcoming barriers to clinical trial research for minorities is necessary if we are to achieve the goals of Healthy People 2010. To understand the unexpectedly high rate of attrition in the A NULIFE study, the research team examined the perceived barriers to participation among minority women. The purpose of this study was to determine if either personal or study-related factors influenced healthy pre-menopausal women aged 25-45 years to terminate their participation in the A NULIFE Study. We hypothesized that personal factors were the driving forces for attrition rates in the prevention trial.^ Methods. The target population consisted of eligible women who consented to the A NULIFE study but withdrew prior to being randomized (N= 46), as well as eligible women who completed the informed consent process for the A NULIFE study and withdrew after randomization (N= 42). Examination of attrition rates in this study occurred at a time point when 10 out of 12 participant groups had completed the A NULIFE study. Data involving the 2 groups that were actively engaged in study activities were not used in this analysis. A survey instrument was designed to query the personal and study-related factors that were believed to have contributed to the decision to terminate participation in the A NULIFE study.^ Results. Overall, the highest ranked personal reason that influenced withdrawal from the study was being “too busy” with other obligations. The second highest ranked factor for withdrawal was work obligations. Whereas, more than half of all participants agreed that they were well-informed about the study and considered the study personnel to be approachable, 54% of participants would have been inclined to remain in the study if it were located at a local community center.^ Conclusions. Time commitment was likely a major factor for withdrawal from the A NULIFE study. Future investigators should implement trials within participant communities where possible. Also, focus group settings may provide detailed insight into factors that contribute to the attrition of minorities in cancer clinical trials.^
Resumo:
Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.
Resumo:
Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified. Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of platelets on cancer cell proliferation, apoptosis, and migration were examined. RNA interference was used to query signaling pathways mediating these effects. The necessity of platelet activation for in vitro effect was analyzed. In vivo orthotopic models were used to query the impact of thrombocytosis and thrombocytopenia on the efficacy of cytotoxic chemotherapy, the effect of aspirin on thrombocytosis and cancer, and platelet effect on anti-angiogenic therapy. Results: Platelets were found to increase at the time of diagnosis of ovarian cancer recurrence in a pattern comparable to CA-125. Platelet co-culture increased proliferation, increased migration, and decreased apoptosis in all cell lines tested. RNA interference implicated platelet derived growth factor alpha (PDGFRA) and transforming growth factor beta-receptor 1 (TGFBR1) signaling. Biodistribution studies suggested minimal platelet sequestration of taxanes. Blockade of platelet activation blocked in vitro effects. In vivo, thrombocytosis blocked chemotherapeutic efficacy, thrombocytopenia increased chemotherapeutic efficacy, and aspirin therapy partially blocked the effects of thrombocytosis. In vivo, withdrawal of anti-angiogenic therapy caused loss of therapeutic benefit with evidence of accelerated disease growth. This effect was blocked by use of a small-molecule inhibitor of Focal Adhesion Kinase. Anti-angiogenic therapy was also associated with increased platelet infiltration into tumor that was not seen to the same degree in the control or FAK-inhibitor-treated mice. Conclusions: Platelets are active participants in the growth and metastasis of tumor, both directly and via facilitation of angiogenesis. Blocking platelets, blocking platelet activation, and blocking platelet trafficking into tumor are novel therapeutic avenues supported by this data. Copyright © 2012 Justin Neal Bottsford-Miller, all rights reserved.
Resumo:
The nine membrane-bound isoforms of adenylyl cyclase (AC), via synthesis of the signaling molecule cyclic AMP (cAMP), are involved in many isoform specific physiological functions. Decreasing AC5 activity has been shown to have potential therapeutic benefit, including reduced stress on the heart, pain relief, and attenuation of morphine dependence and withdrawal behaviors. However, AC structure is well conserved, and there are currently no isoform selective AC inhibitors in clinical use. P-site inhibitors inhibit AC directly at the catalytic site, but with an uncompetitive or noncompetitive mechanism. Due to this mechanism and nanomolar potency in cell-free systems, attempts at ligand-based drug design of novel AC inhibitors frequently use P-site inhibitors as a starting template. One small molecule inhibitor designed through this process, NKY80, is described as an AC5 selective inhibitor with low micromolar potency in vitro. P-site inhibitors reveal important ligand binding “pockets” in the AC catalytic site, but specific interactions that give NKY80 selectivity are unclear. Identifying and characterizing unique interactions between NKY80 and AC isoforms would significantly aid the development of isoform selective AC inhibitors. I hypothesized that NKY80’s selective inhibition is conferred by AC isoform specific interactions with the compound within the catalytic site. A structure-based virtual screen of the AC catalytic site was used to identify novel small molecule AC inhibitors. Identified novel inhibitors are isoform selective, supporting the catalytic site as a region capable of more potent isoform selective inhibition. Although NKY80 is touted commercially as an AC5 selective inhibitor, its characterization suggests strong inhibition of both AC5 and the closely related AC6. NKY80 was also virtually docked to AC to determine how NKY80 binds to the catalytic site. My results show a difference between NKY80 binding and the conformation of classic P-site inhibitors. The selectivity and notable differences in NKY80 binding to the AC catalytic site suggest a catalytic subregion more flexible in AC5 and AC6 that can be targeted by selective small molecule inhibitors.
Resumo:
Adolescent substance use is a serious public health concern with long-lasting consequences. Although specific coping behaviors have been associated with adolescent substance use, less is known about the role of multidimensional coping styles that account for both positive and negative coping behaviors. This study examined the association of coping styles and substance use (alcohol, marijuana, and other illicit drugs) of 1,019 ethnically diverse high school students. Coping styles were categorized by high or low negative coping behaviors (e.g. distraction, social withdrawal, self-criticism, blame others, wishful thinking, resignation, and negative emotional regulation) and high or low positive coping behaviors (e.g. cognitive restructuring, problem-solving, social support, and positive emotional regulation). My hypothesis that high positive coping, regardless of the use of negative coping behaviors, would be protective against substance use was rejected. Logistic regression analyses controlling for age, gender, race, and parent education indicated that adolescents who relied primarily on adaptive coping were 45-67% less likely to report lifetime or past year substance use than any other coping style. However, mixed copers (i.e. high in both positive and negative coping behaviors) were 2 to 3 times as likely to report substance use than their adaptive coping counterparts.^
Resumo:
A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.
Resumo:
The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^
Resumo:
El presente trabajo está basado en el recorte de algunos resultados y conclusiones de la investigación que desarrollé en el marco de la beca doctoral UBACyT (2003-2007) acerca de los "Aspectos histórico-libidinales en niños y niñas con problemas en sus aprendizajes que manifiestan dificultades atencionales". Se partió de la idea de que no existen niños que no atiendan en lo absoluto, que de lo que se tratará es de ubicar en qué tienen puesta su atención los niños desatentos. Las conclusiones principales fueron: La necesidad de plantear las dificultades atencionales como resultante de múltiples determinaciones y no tan sólo a causa de un supuesto déficit neurológico. La responsabilidad profesional de diferenciar diagnósticos descriptivos, de diagnósticos estructurales de sujetos en constitución. Se cuestionó la dicotomía cuerpo - mente, se propuso pensar la intersección entre “vulnerabilidad genética" y “potencialidad traumática". Se encontró una estrecha ligazón de las dificultades atencionales con las historias libidinales. Se hallaron situaciones silenciadas en todas las historias analizadas, modalidades a predominio de la desinvestidura y la preponderancia de situaciones traumáticas vivenciadas por las diferentes generaciones que el psiquismo prefiere mantener desligadas, incluso a costa del empobrecimiento subjetivo y las dificultades para simbolizar. A partir de este recorrido se proponen algunas herramientas para abordar la problemática tanto desde el espacio clínico, como escolar.
Resumo:
Referirnos al término discapacidad es hablar de limitaciones en el desarrollo humano, que pueden manifestarse a nivel físico, psíquico o social. El propósito de este proyecto es acercar el Hospital Universitario y la Facultad de Odontología a la problemática existente en el acceso a la salud Bucal de personas con discapacidad y, mediante una participación activa, cambiar esta realidad y mejorar su calidad de vida. Los destinatarios son 51 residentes de THADI (Taller Hogar de Actividades Diferenciadas) cuya incorporación está motivada por razones socio-familiares, agravadas por la condición de discapacidad, no por ser la discapacidad la única razón que justifique el apartamiento del medio familiar. El objetivo es brindarles la atención humanizada y personalizada que ofrece el Hospital Universitario, implementando mecanismos que parten desde la educación hasta la resolución de sus problemas de salud Bucal.
Resumo:
Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.
Resumo:
Spatial and temporal patterns in test size and shape (test conicity and spiral roundness) and absolute abundance (accumulation rate) of the planktonic foraminifer Contusotruncana contusa were studied in the South Atlantic Ocean (DSDP sites 356, 516, 525 and 527) during an interval corresponding to the last 800 kyr of the Cretaceous. The variation in absolute abundance of C. contusa was characterised by alternating periods of high and low abundance; some of these periods were traceable across the entire mid-latitude South Atlantic Ocean. While the mean spiral roundness did not show any interpretable patterns, a sudden increase of the mean test size and mean test conicity occurred between 65.3 and 65.2 Ma (based on linear interpolation within the Cretaceous part of Subchron C29R) at all sites studied, indicating a poleward migration followed by rapid withdrawal of the low-latitude C. contusa morphotypes from the mid-latitude South Atlantic Ocean. We suggest that this event was caused by a short period of surface-water warming in the southern mid-latitudes corresponding to the brief high-latitude warming event and associated faunal migrations in the Boreal and Austral realms.