967 resultados para weighted finite difference approximation scheme
Resumo:
Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.
Resumo:
Australia's rangelands are experiencing a post-productivist transition at a tempo comparable to Western Europe's, but in contexts that ensure marked divergence in impulses, actors, processes and outcomes. In Australia's most marginal lands, a flimsy mode of pastoral occupance is being displaced by renewed indigenous occupance, conservation and tourism, with significant changes in land ownership, property rights, investment sources and power relations, but also with structural problems arising from fugitive income streams. The sharp delineation between structurally coherent commodity-oriented regions and emerging amenity-oriented regions can provisionally be mapped at a national scale. A comparison of Australia with Western Europe indicates that three distinct but interconnected driving forces are propelling the rural transition, namely: agricultural overcapacity; the emergence of amenity-oriented uses; and changing societal values.
Resumo:
This article undertakes a text analysis of the promotional materials generated by two educational brokers, the British Council’s Education Counselling Service (ECS) and Australia’s International Development Programme (IDP-Education Australia).By focusing on the micropractices of branding, the constructions of the "international student" and "international education" are examined to uncover the relations between international education and globalisation.The conclusion reached here is that the dominant marketing messages used to brand and sell education are unevenly weighted in favour of the economic imperative.International education remains fixed in modernist spatiotemporal contexts that ignore the challenges presented by globalisation.Developing new notions of international education will require a more critical engagement with the geopolitics of knowledge and with issues of subjectivity, difference, and power.Ultimately, a more sustained and comprehensive engagement with the noneconomic dimensions of globalisation will be necessary to achieve new visions of international education.
Resumo:
The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.
Resumo:
Cyclic m-cycle systems of order v are constructed for all m greater than or equal to 3, and all v = 1(mod 2m). This result has been settled previously by several authors. In this paper, we provide a different solution, as a consequence of a more general result, which handles all cases using similar methods and which also allows us to prove necessary and sufficient conditions for the existence of a cyclic m-cycle system of K-v - F for all m greater than or equal to 3, and all v = 2(mod 2m).
Resumo:
A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of integrable models relevant to the description of Bose-Einstein condensation in dilute alkali gases. This is achieved by introducing the notion of Z-graded representations of the Yang-Baxter algebra. (C) 2003 American Institute of Physics.