967 resultados para wave equation
Resumo:
High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.
Resumo:
The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.
Resumo:
The goal of this paper is to study and further develop the orthogonality sampling or stationary waves algorithm for the detection of the location and shape of objects from the far field pattern of scattered waves in electromagnetics or acoustics. Orthogonality sampling can be seen as a special beam forming algorithm with some links to the point source method and to the linear sampling method. The basic idea of orthogonality sampling is to sample the space under consideration by calculating scalar products of the measured far field pattern , with a test function for all y in a subset Q of the space , m = 2, 3. The way in which this is carried out is important to extract the information which the scattered fields contain. The theoretical foundation of orthogonality sampling is only partly resolved, and the goal of this work is to initiate further research by numerical demonstration of the high potential of the approach. We implement the method for a two-dimensional setting for the Helmholtz equation, which represents electromagnetic scattering when the setup is independent of the third coordinate. We show reconstructions of the location and shape of objects from measurements of the scattered field for one or several directions of incidence and one or many frequencies or wave numbers, respectively. In particular, we visualize the indicator function both with the Dirichlet and Neumann boundary condition and for complicated inhomogeneous media.
Resumo:
In this article, Northern Hemisphere winter midlatitude blocking is analysed through its wave-breaking characteristics. Rossby wave breaking is identified as a key process in blocking occurrence, as it provides the mechanism for the meridional reversal pattern typical of blocking. Two indices are designed to detect the major properties of wave breaking, i.e. the orientation (cyclonic/anticyclonic–direction of breaking or DB index) and the relative contribution of air masses (warm/cold–relative intensity or RI index). The use of the DB index differentiates between the anticyclonic cases over Europe and Asia and the cyclonic events over the oceanic basins. One of the three regions displaying cyclonic type was found over the Atlantic Ocean, the other two being over the Pacific Ocean. The first of these is located over the western side of the Pacific and is dominated by warm air extrusions, whereas the second is placed northward of the exit region of the jet stream, where the meridional θ gradient is much weaker. Two European blocking types have been detected using the RI index, which separates out the cases dominated by warm and cold air masses. The latter cases in particular exhibited a well-structured dipole, with associated strong anomalies in both temperature and precipitation. Copyright © 2011 Royal Meteorological Society
Resumo:
Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.
Resumo:
Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.
Resumo:
This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag. In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.
Resumo:
In the stratosphere, chemical tracers are drawn systematically from the equator to the pole. This observed Brewer–Dobson circulation is driven by wave drag, which in the stratosphere arises mainly from the breaking and dissipation of planetary-scale Rossby waves. While the overall sense of the circulation follows from fundamental physical principles, a quantitative theoretical understanding of the connection between wave drag and Lagrangian transport is limited to linear, small-amplitude waves. However, planetary waves in the stratosphere generally grow to a large amplitude and break in a strongly nonlinear fashion. This paper addresses the connection between stratospheric wave drag and Lagrangian transport in the presence of strong nonlinearity, using a mechanistic three-dimensional primitive equations model together with offline particle advection. Attention is deliberately focused on a weak forcing regime, such that sudden warmings do not occur and a quasi-steady state is reached, in order to examine this question in the cleanest possible context. Wave drag is directly linked to the transformed Eulerian mean (TEM) circulation, which is often used as a surrogate for mean Lagrangian motion. The results show that the correspondence between the TEM and mean Lagrangian velocities is quantitatively excellent in regions of linear, nonbreaking waves (i.e., outside the surf zone), where streamlines are not closed. Within the surf zone, where streamlines are closed and meridional particle displacements are large, the agreement between the vertical components of the two velocity fields is still remarkably good, especially wherever particle paths are coherent so that diabatic dispersion is minimized. However, in this region the meridional mean Lagrangian velocity bears little relation to the meridional TEM velocity, and reflects more the kinematics of mixing within and across the edges of the surf zone. The results from the mechanistic model are compared with those from the Canadian Middle Atmosphere Model to test the robustness of the conclusions.