952 resultados para wave energy converters
Resumo:
We study a version of the Keller–Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave solutions in the small diffusion case that converge to these exact solutions in the singular limit.
Resumo:
This research was commissioned by Metecno Pty Ltd, trading as Bondor®. The InsulLiving house was designed and constructed by Bondor®. The house instrumentation (electricity circuits, indoor environment, weather station) was provided by Bondor and supplied and installed by independent contractors. This report contains analysis of data collected from the InsulLiving house at Burpengary during 1 year of occupancy by a family of four for the period 1 April 2012 – 31 March 2013. The data shows a daily average electricity consumption 48% less than the regional average. The analysis confirms that the 9 star house performed thermally slightly better than the simulated performance. The home was 'near zero energy', with its modest 2.1kW solar power system meeting all of the needs for space heating and cooling, lighting and most water heating.
Resumo:
Electric Energy Storage (EES) is considered as one of the promising options for reducing the need for costly upgrades in distribution networks in Queensland (QLD). However, It is expected, the full potential for storage for distribution upgrade deferral cannot be fully realized due to high cost of EES. On the other hand, EES used for distribution deferral application can support a variety of complementary storage applications such as energy price arbitrage, time of use (TOU) energy cost reduction, wholesale electricity market ancillary services, and transmission upgrade deferral. Aggregation of benefits of these complementary storage applications would have the potential for increasing the amount of EES that may be financially attractive to defer distribution network augmentation in QLD. In this context, this paper analyzes distribution upgrade deferral, energy price arbitrage, TOU energy cost reduction, and integrated solar PV-storage benefits of EES devices in QLD.
Resumo:
Energy auditing is an effective but costly approach for reducing the long-term energy consumption of buildings. When well-executed, energy loss can be quickly identified in the building structure and its subsystems. This then presents opportunities for improving energy efficiency. We present a low-cost, portable technology called "HeatWave" which allows non-experts to generate detailed 3D surface temperature models for energy auditing. This handheld 3D thermography system consists of two commercially available imaging sensors and a set of software algorithms which can be run on a laptop. The 3D model can be visualized in real-time by the operator so that they can monitor their degree of coverage as the sensors are used to capture data. In addition, results can be analyzed offline using the proposed "Spectra" multispectral visualization toolbox. The presence of surface temperature data in the generated 3D model enables the operator to easily identify and measure thermal irregularities such as thermal bridges, insulation leaks, moisture build-up and HVAC faults. Moreover, 3D models generated from subsequent audits of the same environment can be automatically compared to detect temporal changes in conditions and energy use over time.
Resumo:
ZnO is a promising photoanode material for dye-sensitized solar cells (DSCs) due to its high bulk electron mobility and because different geometrical structures can easily be tailored. Although various strategies have been taken to improve ZnO-based DSC efficiencies, their performances are still far lower than TiO2 counterparts, mainly because low conductivity Zn2+–dye complexes form on the ZnO surfaces. Here, cone-shaped ZnO nanocrystals with exposed reactive O-terminated {101̅1} facets were synthesized and applied in DSC devices. The devices were compared with DSCs made from more commonly used rod-shaped ZnO nanocrystals where {101̅0} facets are predominantly exposed. When cone-shaped ZnO nanocrystals were used, DSCs sensitized with C218, N719, and D205 dyes universally displayed better power conversion efficiency, with the highest photoconversion efficiency of 4.36% observed with the C218 dye. First-principles calculations indicated that the enhanced DSCs performance with ZnO nanocone photoanodes could be attributed to the strength of binding between the dye molecules and reactive O-terminated {101̅1} ZnO facets and that more effective use of dye molecules occurred due to a significantly less dye aggregation on these ZnO surfaces compared to other ZnO facets.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
This paper proposes a new distributed coordination approach to make load leveling, using Energy Storage Units (ESUs) in LV network. The proposed distributed control strategy is based on consensus algorithm which shares the required active power equally among the ESUs with respect to their rating. To show the effectiveness of the proposed approach, a typical radial LV network is simulated as a case study.
Resumo:
Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Resumo:
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Resumo:
Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.
Resumo:
In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.
Resumo:
Energy efficiency is a complex topic to integrate into higher education curricula, with limited success internationally or in Australia. This paper discusses one of the successful initiatives within the Energy Efficiency Training Program, which was jointly managed and implemented by the New South Wales Office of Environment and Heritage and Department of Education and Communities. The state government initiative aimed to increase the knowledge and skills of the New South Wales workforce, help business to identify and implement energy efficiency projects, and provide professional development for the training providers. Key sectors targeted included property, construction, manufacturing and services. The Program was externally evaluated over the three years 2011 to 2013 and a range of insights were gained through these facilitated reflective opportunities, confirming and building upon literature on the topic to date. This paper presents lessons learned from the engineering part of the program (‘the project’), spanning government agencies, academic institutions, and academia. The paper begins with a contextual summary, followed by a synthesis of key learnings and implications for future training initiatives. It is intended that sharing these lessons will contribute to literature in the field, and assist other organisations in Australia and overseas planning similar initiatives.
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.