949 resultados para vortex loop
Resumo:
This paper reports on the development of elements of an e-supply chain management system for managing maintenance, repair and overhaul (MRO) relationships in the aerospace industry. A standard systems development methodology has been followed to produce a process model (i.e. the AMSCR model); an information model (i.e. business rules) and a computerised information management capability (i.e. automated optimisation). The proof of concept for this web-based MRO supply chain system has been established through the collaboration with a sample of the different types of supply chain members. The proven benefit is a reduction in the stock-holding costs for the whole supply chain whilst also minimising non-flying time of the aircraft that the supply chain supports. This type of system is now vital in an industry that has continuously decreasing profit margins, which in turn means pressure to reduce servicing times and increase the interval between maintenance actions.
Resumo:
Influential models of short-term memory have attributed the fact that short words are recalled better than longer words in serial recall (the length effect) to articulatory rehearsal. Crucial for this link is the finding that the length effect disappears under articulatory suppression. We show, instead, that, under suppression, the length effect is abolished or reversed for real words but remains robust for nonwords. The latter finding is demonstrated in a variety of conditions: with lists of three and four nonwords, with nonwords drawn from closed and open sets, with spoken and written presentation, and with written and spoken output. Our interpretation is that the standard length effect derives from the number of phonological units to be retained. The length effect is abolished or reversed under suppression because this condition encourages reliance on lexical-semantic representations. Using these representations, longer words can more easily be reconstructed from degraded phonology than shorter words. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The transmission of a 10-Gb/s data stream was demonstrated experimentally over a practically unlimited distance in a standard single-mode fiber system using nonlinear optical loop mirrors as simple in-line 2R regenerators. Error-free propagation over 100 000 km has been achieved with terrestrial amplifier spacing. © 2004 IEEE.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Observation of autosoliton propagation in a dispersion-managed optical transmission system controlled by in-line nonlinear fiber loop switches is reported for what is believed to be the first time. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10 and 40 Gbits/s is demonstrated. ©2004 Optical Society of America.
Resumo:
We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
Synthesis of a sharp switching characteristic is experimentally demonstrated by concatenation of nonlinear optical loop mirrors. A novel configuration has been used which results in three terminal operation of the device. This device can be used as a logic gate and for pulse shaping to produce square pulses.
Resumo:
The authors show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device