895 resultados para volatility index
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
Resumo:
A number of methods of evaluating the validity of interval forecasts of financial data are analysed, and illustrated using intraday FTSE100 index futures returns. Some existing interval forecast evaluation techniques, such as the Markov chain approach of Christoffersen (1998), are shown to be inappropriate in the presence of periodic heteroscedasticity. Instead, we consider a regression-based test, and a modified version of Christoffersen's Markov chain test for independence, and analyse their properties when the financial time series exhibit periodic volatility. These approaches lead to different conclusions when interval forecasts of FTSE100 index futures returns generated by various GARCH(1,1) and periodic GARCH(1,1) models are evaluated.
Resumo:
Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts
Resumo:
It is currently estimated that over 370 million individuals have diabetes, making diabetes a major public health issue contributing significantly to global morbidity and mortality. The steep rise in diabetes prevalence over the past decades is attributable, in a large part, to lifestyle changes, with dietary habits and behaviour significant contributors. Despite the relatively wide availability of anti-diabetic medicine, it is lifestyle approaches that still remain the cornerstone of diabetes prevention and treatment. Glycemic index (GI) is a nutritional tool, which represents the glycemic response to carbohydrate ingestion. In light of the major impact of nutrition on diabetes pathophysiology, with the rising need to combat the escalating diabetes epidemic, this review will focus on the role of GI in glycemic control, the primary target of diabetic treatment and beyond. The review will present the evidence relating GI and diabetes treatment and prevention, as well as weight loss, weight maintenance and CVD risk factors.
Resumo:
In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.
Resumo:
This paper examines the lead–lag relationship between the FTSE 100 index and index futures price employing a number of time series models. Using 10-min observations from June 1996–1997, it is found that lagged changes in the futures price can help to predict changes in the spot price. The best forecasting model is of the error correction type, allowing for the theoretical difference between spot and futures prices according to the cost of carry relationship. This predictive ability is in turn utilised to derive a trading strategy which is tested under real-world conditions to search for systematic profitable trading opportunities. It is revealed that although the model forecasts produce significantly higher returns than a passive benchmark, the model was unable to outperform the benchmark after allowing for transaction costs.
Resumo:
In the absence of market frictions, the cost-of-carry model of stock index futures pricing predicts that returns on the underlying stock index and the associated stock index futures contract will be perfectly contemporaneously correlated. Evidence suggests, however, that this prediction is violated with clear evidence that the stock index futures market leads the stock market. It is argued that traditional tests, which assume that the underlying data generating process is constant, might be prone to overstate the lead-lag relationship. Using a new test for lead-lag relationships based on cross correlations and cross bicorrelations it is found that, contrary to results from using the traditional methodology, periods where the futures market leads the cash market are few and far between and when any lead-lag relationship is detected, it does not last long. Overall, the results are consistent with the prediction of the standard cost-of-carry model and market efficiency.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
This article examines the role of idiosyncratic volatility in explaining the cross-sectional variation of size- and value-sorted portfolio returns. We show that the premium for bearing idiosyncratic volatility varies inversely with the number of stocks included in the portfolios. This conclusion is robust within various multifactor models based on size, value, past performance, liquidity and total volatility and also holds within an ICAPM specification of the risk–return relationship. Our findings thus indicate that investors demand an additional return for bearing the idiosyncratic volatility of poorly-diversified portfolios.
Resumo:
This article identifies and compares the determinants of CEO compensation to median employee earnings with those of the Corporate Gini Index (CGI). Using a multinational retail company, the article posits that the CGI is an advantageous corporate alternative pay inequality measure that concerns CEO pay multiples to median employee earnings, which regulators should consider using and disclosing in proxy statements. Although CGI and the official measure of multiples of CEO pay to median employee earnings share some of the challenges, the advantages of CGI as an alternative measure are greater. Our findings suggest that the CGI is a much better measure of corporate income inequality bringing clear benefits at both micro and macro levels of intervention.
Resumo:
Low glycaemic index (GI) foods consumed at breakfast can enhance memory in comparison to high-GI foods; however, the impact of evening meal GI manipulations on cognition the following morning remains unexplored. Fourteen healthy males consumed a high-GI evening meal or a low-GI evening meal in a counterbalanced order on two separate evenings. Memory and attention were assessed before and after a high-GI breakfast the following morning. The high-GI evening meal elicited significantly higher evening glycaemic responses than the low-GI evening meal. Verbal recall was better the morning following the high-GI evening meal compared to after the low-GI evening meal. In summary, the GI of the evening meal was associated with memory performance the next day, suggesting a second meal cognitive effect. The present findings imply that an overnight fast may not be sufficient to control for previous nutritional consumption.
Resumo:
Context: Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully. Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and explore the differences in stress response of oaks and beech. Methods: We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural Networks-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines. Results: Tested variables explained 84–97% of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism. Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.
Resumo:
In this paper, we study the role of the volatility risk premium for the forecasting performance of implied volatility. We introduce a non-parametric and parsimonious approach to adjust the model-free implied volatility for the volatility risk premium and implement this methodology using more than 20 years of options and futures data on three major energy markets. Using regression models and statistical loss functions, we find compelling evidence to suggest that the risk premium adjusted implied volatility significantly outperforms other models, including its unadjusted counterpart. Our main finding holds for different choices of volatility estimators and competing time-series models, underlying the robustness of our results.