986 resultados para viral genome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Temporary increases in plasma HIV RNA ('blips') are common in HIV patients on combination antiretroviral therapy (cART). Blips above 500 copies/mL have been associated with subsequent viral rebound. It is not clear if this relationship still holds when measurements are made using newer more sensitive assays. METHODS: We selected antiretroviral-naive patients that then recorded one or more episodes of viral suppression on cART with HIV RNA measurements made using more sensitive assays (lower limit of detection below 50 copies/ml). We estimated the association in these episodes between blip magnitude and the time to viral rebound. RESULTS: Four thousand ninety-four patients recorded a first episode of viral suppression on cART using more sensitive assays; 1672 patients recorded at least one subsequent suppression episode. Most suppression episodes (87 %) were recorded with TaqMan version 1 or 2 assays. Of the 2035 blips recorded, 84 %, 12 % and 4 % were of low (50-199 copies/mL), medium (200-499 copies/mL) and high (500-999 copies/mL) magnitude respectively. The risk of viral rebound increased as blip magnitude increased with hazard ratios of 1.20 (95 % CI 0.89-1.61), 1.42 (95 % CI 0.96-2.19) and 1.93 (95 % CI 1.24-3.01) for low, medium and high magnitude blips respectively; an increase of hazard ratio 1.09 (95 % CI 1.03 to 1.15) per 100 copies/mL of HIV RNA. CONCLUSIONS: With the more sensitive assays now commonly used for monitoring patients, blips above 200 copies/mL are increasingly likely to lead to viral rebound and should prompt a discussion about adherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long noncoding RNAs (lncRNAs) are one of the most intensively studied groups of noncoding elements. Debate continues over what proportion of lncRNAs are functional or merely represent transcriptional noise. Although characterization of individual lncRNAs has identified approximately 200 functional loci across the Eukarya, general surveys have found only modest or no evidence of long-term evolutionary conservation. Although this lack of conservation suggests that most lncRNAs are nonfunctional, the possibility remains that some represent recent evolutionary innovations. We examine recent selection pressures acting on lncRNAs in mouse populations. We compare patterns of within-species nucleotide variation at approximately 10,000 lncRNA loci in a cohort of the wild house mouse, Mus musculus castaneus, with between-species nucleotide divergence from the rat (Rattus norvegicus). Loci under selective constraint are expected to show reduced nucleotide diversity and divergence. We find limited evidence of sequence conservation compared with putatively neutrally evolving ancestral repeats (ARs). Comparisons of sequence diversity and divergence between ARs, protein-coding (PC) exons and lncRNAs, and the associated flanking regions, show weak, but significantly lower levels of sequence diversity and divergence at lncRNAs compared with ARs. lncRNAs conserved deep in the vertebrate phylogeny show lower within-species sequence diversity than lncRNAs in general. A set of 74 functionally characterized lncRNAs show levels of diversity and divergence comparable to PC exons, suggesting that these lncRNAs are under substantial selective constraints. Our results suggest that, in mouse populations, most lncRNA loci evolve at rates similar to ARs, whereas older lncRNAs tend to show signals of selection similar to PC genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Une lésion nerveuse périphérique est susceptible d'engendrer une douleur neuropathique caractérisée par des changements d'expression génique dans les neurones nociceptifs des ganglions spinaux. Parmi ces modifications, on note une augmentation transcriptionnelle du gène codant pour la guanosine triphosphate cyclohydrolase 1 (GCH1) considérée comme modulateur clé des douleurs neuropathiques périphériques1. La surexpression de la GCH1 induit alors une hausse de la concentration de la tétrahydrobiopterin (BH4), un cofacteur essentiel pour la production de catécholamines, de sérotonine et d'oxide nitrique dans les ganglions spinaux. La surexpression de ce cofacteur induit la production de ces neurotransmetteurs et contribue à l'augmentation de la sensibilité douloureuse. Dans ce travail, j'ai modulé l'expression de GCH1 par l'utilisation d'un vecteur viral adéno-associé. Tout d'abord, j'ai testé in vitro dans des cellules PC12 différentes molécules d'ARN interfèrent permettant la régulation négative de GCH1. Les cellules PC 12 contiennent constitutionnellement la GCH1 et sont donc intéressantes afin de tester et sélectionner un plasmide permettant une régulation négative efficace de cette molécule in vitro. Cela m'a permis de choisir après sélection de cellules par FACS et quantification protéique par Western blot les meilleurs sh-ARN à utiliser tant pour la régulation négative de GCH1 que pour le vecteur contrôle. J'ai ensuite co- transfecté ces plasmides avec le plasmide pDF6 dans des cellules HEK293T pour la production de mon vecteur viral (rAAV2/6) permettant la régulation négative de la GCH1 ainsi que de mon vecteur contrôle. Après avoir étudié deux voies d'injection chez le rat (dans le nerf sciatique et en intrathécal), j'ai retenu la voie intrathécale comme ayant le meilleur taux de transduction de mon vecteur viral au niveau des ganglions spinaux. Utiliser cette voie d'injection pour mon vecteur permet de cibler plus particulièrement les neurones nociceptifs des ganglions spinaux. J'ai ensuite étudié la modulation de la GCH1 et sa répercussion sur le développement et le maintien des douleurs neuropathiques dans le modèle animal « spared nerve injury » (SNI). Je n'ai pas obtenu de diminution de douleur ni au niveau comportemental ni au niveau moléculaire chez le rat. Ayant répété l'expérience chez la souris, j'ai obtenu une diminution significative de l'expression de la GCH1 au niveau de l'ARN messager. Je n'ai pas étudié l'efficacité de mon vecteur in vivo chez la souris car un autre groupe m'a devancé dans cette expérience et a publié une étude similaire montrant une régulation négative et efficace de la GCH1 sur les symptômes de douleur neuropathique. Mes résultats, associés à cette publication, démontrent la validité de mon hypothèse de départ et ouvrent de nouvelles perspectives thérapeutiques en prenant comme cible la production de BH4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effect of nonadherence to antiretroviral therapy (ART) on virologic failure and mortality in naive individuals starting ART. DESIGN: Prospective observational cohort study. METHODS: Eligible individuals enrolled in the Swiss HIV Cohort Study, started ART between 2003 and 2012, and provided adherence data on at least one biannual clinical visit. Adherence was defined as missed doses (none, one, two, or more than two) and percentage adherence (>95, 90-95, and <90) in the previous 4 weeks. Inverse probability weighting of marginal structural models was used to estimate the effect of nonadherence on viral failure (HIV-1 viral load >500 copies/ml) and mortality. RESULTS: Of 3150 individuals followed for a median 4.7 years, 480 (15.2%) experienced viral failure and 104 (3.3%) died, 1155 (36.6%) reported missing one dose, 414 (13.1%) two doses and, 333 (10.6%) more than two doses of ART. The risk of viral failure increased with each missed dose (one dose: hazard ratio [HR] 1.15, 95% confidence interval 0.79-1.67; two doses: 2.15, 1.31-3.53; more than two doses: 5.21, 2.96-9.18). The risk of death increased with more than two missed doses (HR 4.87, 2.21-10.73). Missing one to two doses of ART increased the risk of viral failure in those starting once-daily (HR 1.67, 1.11-2.50) compared with those starting twice-daily regimens (HR 0.99, 0.64-1.54, interaction P = 0.09). Consistent results were found for percentage adherence. CONCLUSION: Self-report of two or more missed doses of ART is associated with an increased risk of both viral failure and death. A simple adherence question helps identify patients at risk for negative clinical outcomes and offers opportunities for intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii) the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 × 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 × 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 × 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the first genome sequence of the Aeromonas diversa type strain (CECT 4254T). This strain was isolated from the leg wound of a patient in New Orleans (Louisiana, USA) and was originally described as Enteric Group 501 and distinguished from A. schubertii by DNADNA hybridization and phenotypical characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol misuse is the leading cause of cirrhosis and the second most common indication for liver transplantation in the Western world. We performed a genome-wide association study for alcohol-related cirrhosis in individuals of European descent (712 cases and 1,426 controls) with subsequent validation in two independent European cohorts (1,148 cases and 922 controls). We identified variants in the MBOAT7 (P = 1.03 × 10(-9)) and TM6SF2 (P = 7.89 × 10(-10)) genes as new risk loci and confirmed rs738409 in PNPLA3 as an important risk locus for alcohol-related cirrhosis (P = 1.54 × 10(-48)) at a genome-wide level of significance. These three loci have a role in lipid processing, suggesting that lipid turnover is important in the pathogenesis of alcohol-related cirrhosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.