967 resultados para viola transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human transcription factor IIA (TFIIA) is composed of three subunits (alpha, beta, and gamma). TFIIA interacts with the TATA-box binding protein and can overcome repression of transcription. TFIIA was found to be necessary for VP16-mediated transcriptional activation through a coactivator function. We have separated the coactivator and antirepression activities of TFIIA. A TFIIA lacking the alpha subunit was isolated from HeLa cells. This "mini-TFIIA" interacts with the TATA-box binding protein and can overcome repression of transcription, but it is defective in transcriptional coactivator function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory protein p4 from Bacillus subtilis phage phi29 activates transcription from the viral late A3 promoter by stabilizing sigmaA-RNA polymerase at the promoter as a closed complex. Activation requires an interaction between protein p4 and RNA polymerase mediated by the protein p4 carboxyl-end, mainly through residue Arg-120. We have obtained derivatives of B. subtilis RNA polymerase alpha subunit with serial deletions at the carboxyl-end and reconstituted RNA polymerase holoenzymes harboring the mutant alpha subunits. Protein p4 promoted the binding of purified B. subtilis RNA polymerase alpha subunit to the A3 promoter in a cooperative way. Binding was abolished by deletion of the last 15 amino acids of the alpha subunit. Reconstituted RNA polymerases with deletions of 15 to 59 residues at the alpha subunit carboxyl-end could recognize and transcribe viral promoters not activated by protein p4, but they had lost their ability to recognize the A3 promoter in the presence of protein p4. In addition, these mutant reconstituted RNA polymerases could not interact with protein p4. We conclude that protein p4 activation of the viral A3 promoter requires an interaction between the carboxyl-end of protein p4 and the carboxyl-end of the alpha subunit of B. subtilis RNA polymerase that stabilizes the RNA polymerase at the promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a fractionation and purification scheme for the Drosophila RNA polymerase II general transcription factors. Drosophila TFIIE, TFIIF, TFIIH, and RNA polymerase II have been purified to greater than 50% homogeneity from Drosophila embryo nuclear extracts. TFIID has been purified 80-fold and is not significantly contaminated with any of the other general factors. This is the first reported identification and purification of Drosophila TFIIH and TFIIE. Further analysis shows that, similar to their mammalian counterparts, Drosophila TFIIH is composed of eight polypeptides sized between 30 and 100 kDa, and Drosophila TFIIE is composed of two polypeptides sized at 34 and 60 kDa. When all of these fractions are combined with recombinant Drosophila TFlIB, a highly purified in vitro transcription system is generated that has not previously been available in Drosophila. The TFIID fraction can be replaced with recombinant Drosophila TBP to give a transcription system that is nearly free of contaminating proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence specific regulators of eukaryotic gene expression, axiomatically, act through double stranded DNA targets. Proteins that recognize DNA cis-elements as single strands but for which compelling evidence has been lacking to indicate in vivo involvement in transcription are orphaned in this scheme. We sought to determine whether sequence specific single strand binding proteins can find their cognate elements and modify transcription in vivo by studying heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the single stranded sequence (CCCTCCCCA; CT-element) of the human c-myc gene in vitro. To monitor its DNA binding in vivo, the ability of hnRNP K to activate a reporter gene was amplified by fusion with the VP16 transactivation domain. This chimeric protein was found to transactivate circular but not linear CT-element driven reporters, suggesting that hnRNP K recognizes a single strand region generated by negative supercoiling in circular plasmid. When CT-elements were engineered to overlap with lexA operators, addition of lexA protein, either in vivo or in vitro, abrogated hnRNP K binding most likely by preventing single strand formation. These results not only reveal hnRNP K to be a single strand DNA binding protein in vivo, but demonstrate how a segment of DNA may modify the transcriptional activity of an adjacent gene through the interconversion of duplex and single strands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factors c-myb and GATA-2 are both required for blood cell development in vivo and in vitro. However, very little is known on their mechanism(s) of action and whether they impact on complementary or overlapping pathways of hematopoietic proliferation and differentiation. We report here that embryonic stem (ES) cells transfected with c-myb or GATA-2 cDNAs, individually or in combination, underwent hematopoietic commitment and differentiation in the absence of added hematopoietic growth factors but that stimulation with c-kit and flt-3 ligands enhanced colony formation only in the c-myb transfectants. This enhancement correlated with c-kit and flt-3 surface receptor up-regulation in c-myb-(but not GATA-2-) transfected ES cells. Transfection of ES cells with either a c-myb or a GATA-2 antisense construct abrogated erythromyeloid colony-forming ability in methyl cellulose; however, introduction of a full-length GATA-2 or c-myb cDNA, respectively, rescued the hematopoiesis-deficient phenotype, although only c-myb-rescued ES cells expressed c-kit and flt-3 surface receptors and formed increased numbers of hematopoietic colonies upon stimulation with the cognate ligands. These results are in agreement with previous studies indicating a fundamental role of c-myb and GATA-2 in hematopoiesis. Of greater importance, our studies suggest that GATA-2 and c-myb exert their roles in hematopoietic gene regulation through distinct mechanisms of action in nonoverlapping pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch is a transmembrane receptor that plays a critical role in cell fate determination. In Drosophila, Notch binds to and signals through Suppressor of Hairless. A mammalian homologue of Suppressor of Hairless, named CBF1 (or RBPJk), is a ubiquitous transcription factor whose function in mammalian Notch signaling is unknown. To determine whether mammalian Notch can stimulate transcription through a CBF1-responsive element (RE), we cotransfected a CBF1-RE-containing chloramphenicol acetyltransferase reporter and N1(deltaEC), a constitutively active form of human Notch1 lacking the extracellular domain, into DG75, COS-1, HeLa, and 293T cells, which all contain endogenous CBF1. N1(deltaEC) dramatically increased chloramphenicol acetyltransferase activity in these cells, indicating functional coupling of Notch1 and CBF1. The activity was comparable to that produced by the Epstein-Barr virus protein EBNA2, a well-characterized, potent transactivator of CBF1. To test whether CBF1 and Notch1 interact physically, we tagged CBF1 with an epitope from the influenza virus hemagglutinin or with the N-terminal domain of gal4, and transfected the tagged CBF1 plus N1(deltaEC) into COS-1 cells. Cell lysates were immunoprecipitated and immunoblotted with several anti-Notch1 antibodies [to detect N1(deltaEC)] or with antibodies to hemagglutinin or gal4 (to detect CBF1). Each immunoprecipitate contained a complex of N1(deltaEC) and CBF1. In summary, we find that the truncated, active form of human Notch1, N1(deltaEC), binds CBF1 and activates transcription through a CBF1-RE-containing promoter. We conclude that CBF1 is a critical downstream protein in the human Notch1 signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RNA polymerase II and III small nuclear RNA (snRNA) promoters contain a common basal promoter element, the proximal sequence element (PSE). The PSE binds a multisubunit complex we refer to as the snRNA activating protein complex (SNAPc). At least four polypeptides are visible in purified SNAPc preparations, which migrate with apparent molecular masses of 43, 45, 50, and 190 kDa on SDS/polyacrylamide gels. In addition, purified preparations of SNAPc contain variable amounts of TATA box binding protein (TBP). An important question is whether the PSEs of RNA polymerase II and III snRNA promoters recruit the exact same SNAP complex or slightly different versions of SNAPc, differing, for example, by the presence or absence of a subunit. To address this question, we are isolating cDNAs encoding different subunits of SNAPc. We have previously isolated the cDNA encoding the 43-kDa subunit SNAP43. We now report the isolation of the cDNA that encodes the p45 polypeptide. Antibodies directed against p45 retard the mobility of the SNAPc-PSE complex in an electrophoretic mobility shift assay, indicating that p45 is indeed part of SNAPc. We therefore refer to this protein as SNAP45. SNAP45 is exceptionally proline-rich, interacts strongly with TBP, and, like SNAP43, is required for both RNA polymerase II and III transcription of snRNA genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terminal deoxynucleotidyltransferase (TdT) gene encodes a template-independent DNA polymerase that is expressed exclusively in immature lymphocytes. The TdT promoter lacks a TATA box, but an initiator element (Inr) overlaps the transcription start site. The Inr directs basal transcription and also mediates activated transcription in conjunction with an upstream element called D'. We have begun to address the fundamental question of why the TdT promoter contains an Inr rather than a TATA box. First, we tested the possibility that the TdT promoter lacks a TATA box because the -30 region is needed for the binding of an essential regulator. Mutations were introduced into the -30 region, and the mutants were tested in transient transfection and in vitro transcription assays. The mutations had only minor effects on promoter strength, suggesting that this first hypothesis is incorrect. Next, the effect of inserting a TATA box within the -30 region was tested. Although the TATA box enhanced promoter strength, appropriate regulation appeared to be maintained, as transcription in lymphocytes remained dependent on the D' element. Finally, a promoter variant containing a TATA box at -30, but a mutant Inr, was tested. Surprisingly, transcription from this variant, both in vitro and in vivo, was dramatically reduced. These results suggest that the TdT promoter, and possibly other natural promoters, contain an Inr element because one or more activator proteins that interact with surrounding control elements preferentially function in its presence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide analogs with N3'-->P5' phosphoramidate linkages bind to the major groove of double-helical DNA at specific oligopurine.oligopyrimidine sequences. These triple-helical complexes are much more stable than those formed by oligonucleotides with natural phosphodiester linkages. Oligonucleotide phosphoramidates containing thymine and cytosine or thymine, cytosine, and guanine bind strongly to the polypurine tract of human immunodeficiency virus proviral DNA under physiological conditions. Site-specific cleavage by the Dra I restriction enzyme at the 5' end of the polypurine sequence was inhibited by triplex formation. A eukaryotic transcription assay was used to investigate the effect of oligophosphoramidate binding to the polypurine tract sequence on transcription of the type 1 human immunodeficiency virus nef gene under the control of a cytomegalovirus promoter. An efficient arrest of RNA polymerase II was observed at the specific triplex site at submicromolar concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic study of RNA viruses is greatly facilitated by the availability of infectious cDNA clones. However, their construction has often been difficult. While exploring ways to simplify the construction of infectious clones, we have successfully modified and applied the newly described technique of "long PCR" to the synthesis of a full-length DNA amplicon from the RNA of a cytopathogenic mutant (HM 175/24a) of the hepatitis A virus (HAV). Primers were synthesized to match the two extremities of the HAV genome. The antisense primer, homologous to the 3' end, was used in both the reverse transcription (RT) and the PCR steps. With these primers we reproducibly obtained a full-length amplicon of approximately 7.5 kb. Further, since we engineered a T7 promoter in the sense primer, RNA could be transcribed directly from the amplicon with T7 RNA polymerase. Following transfection of cultured fetal rhesus kidney cells with the transcription mixture containing both the HAV cDNA and the transcribed RNA, replicating HAV was detected by immunofluorescence microscopy and, following passage to other cell cultures, by focus formation. The recovered virus displayed the cytopathic effect and large plaque phenotype typical of the original virus; this result highlights the fidelity of the modified long reverse transcription-PCR procedure and demonstrates the potential of this method for providing cDNAs of viral genomes and simplifying the construction of infectious clones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using a crosslinkable probe incorporated into the 3' terminus of nascent transcript, three sites were mapped in Escherichia coli RNA polymerase that are contacted by the RNA in the productive elongation complex. Two of these sites are in the beta subunit and one is in the beta' subunit. During elongation, the transcription complex occasionally undergoes an arrest whereby it can neither extend nor release the RNA transcript. It is demonstrated that in an arrested complex, the three contacts of RNA 3' terminus are lost, while a new beta' subunit contact becomes prominent. Thus, elongation arrest appears to involve the disengagement of the bulk of the active center from the 3' terminus of RNA and the transfer of the terminus into a new protein environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-specific activation of the transcription factor sigma F during sporulation in Bacillus subtilis is controlled by a regulatory pathway involving the proteins SpoIIE, SpoIIAA, and SpoIIAB. SpoIIAB is an antagonist of sigma F, and SpoIIAA, which is capable of overcoming SpoIIAB-mediated inhibition of sigma F, is an antagonist of SpoIIAB. SpoIIAA is, in turn, negatively regulated by SpoIIAB, which phosphorylates SpoIIAA on serine 58. SpoIIAA is also positively regulated by SpoIIE, which dephosphorylates SpoIIAA-P, the phosphorylated form of SpoIIAA. Here, isoelectric focusing and Western blot analysis were used to examine the phosphorylation state of SpoIIAA in vivo. SpoIIAA was found to be largely in the phosphorylated state during sporulation in wild-type cells but a significant portion of the protein that was unphosphorylated could also be detected. Consistent with the idea that SpoIIE governs dephosphorylation of SpoIIAA-P, SpoIIAA was entirely in the phosphorylated state in spoIIE mutant cells. Conversely, overexpression of spoIIE led to an increase in the ratio of unphosphorylated SpoIIAA to SpoIIAA-P and caused inappropriate activation of sigma F in the predivisional sporangium. We also show that a mutant form of SpoIIAA (SpoIIAA-S58T) in which serine 58 was replaced with threonine was present exclusively as SpoIIAA-P, a finding that confirms previous biochemical evidence that the mutant protein is an effective substrate for the SpoIIAB kinase but that SpoIIAA-S58T-P cannot be dephosphorylated by SpoIIE. We conclude that SpoIIE plays a crucial role in controlling the phosphorylation state of SpoIIAA during sporulation and thus in governing the cell-specific activation of sigma F.