988 resultados para variable-range hopping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catch rates from fishery-independent surveys often are assumed to vary in proportion to the actual abundance of a population, but this approach assumes that the catchability coefficient (q) is constant. When fish accumulate in a gear, the rate at which the gear catches fish can decline, and, as a result, catch asymptotes and q declines with longer fishing times. We used data from long-term trap surveys (1990–2011) in the southeastern U.S. Atlantic to determine whether traps saturated for 8 reef fish species because of the amount of time traps soaked or the level of fish accumulation (the total number of individuals of all fish species caught in a trap). We used a delta-generalized-additive model to relate the catch of each species to a variety of predictor variables to determine how catch was influenced by soak time and fish accumulation after accounting for variability in catch due to the other predictor variables in the model. We found evidence of trap saturation for all 8 reef fish species examined. Traps became saturated for most species across the range of soak times examined, but trap saturation occurred for 3 fish species because of fish accumulation levels in the trap. Our results indicate that, to infer relative abundance levels from catch data, future studies should standardize catch or catch rates with nonlinear regression models that incorporate soak time, fish accumulation, and any other predictor variable that may ultimately influence catch. Determination of the exact mechanisms that cause trap saturation is a critical need for accurate stock assessment, and our results indicate that these mechanisms may vary considerably among species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the long-range interactions that arise in homogeneous turbulence as a consequence of the Biot-Savart law. We note that, somewhat surprisingly, these long-range correlations are very weak in decaying, isotropic turbulence, and we argue that this should also be true for magnetohydrodynamic, rotating and stratified turbulence. If this is indeed the case, it is possible to make explicit predictions for the rate of decay of energy in these anisotropic systems, and it turns out that these predictions are consistent with the available numerical and experimental evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bycatch, or the incidental catch of nontarget organisms during fi shing operations, is a major issue in U.S. shrimp trawl fisheries. Because bycatch is typically discarded at sea, total bycatch is usually estimated by extrapolating from an observed bycatch sample to the entire fleet with either mean-per-unit or ratio estimators. Using both field observations of commercial shrimp trawlers and computer simulations, I compared five methods for generating bycatch estimates that were used in past studies, a mean-per-unit estimator and four forms of the ratio estimator, respectively: 1) the mean fish catch per unit of effort, where unit effort was a proxy for sample size, 2) the mean of the individual fish to shrimp ratios, 3) the ratio of mean fish catch to mean shrimp catch, 4) the mean of the ratios of fish catch per time fished (a variable measure of effort), and 5) the ratio of mean fish catch per mean time fished. For field data, different methods used to estimate bycatch of Atlantic croaker, spot, and weakfish yielded extremely different results, with no discernible pattern in the estimates by method, geographic region, or species. Simulated fishing fleets were used to compare bycatch estimated by the fi ve methods with “actual” (simulated) bycatch. Simulations were conducted by using both normal and delta lognormal distributions of fish and shrimp and employed a range of values for several parameters, including mean catches of fish and shrimp, variability in the catches of fish and shrimp, variability in fishing effort, number of observations, and correlations between fish and shrimp catches. Results indicated that only the mean per unit estimators provided statistically unbiased estimates, while all other methods overestimated bycatch. The mean of the individual fish to shrimp ratios, the method used in the South Atlantic Bight before the 1990s, gave the most biased estimates. Because of the statistically significant two- and 3-way interactions among parameters, it is unlikely that estimates generated by one method can be converted or corrected to estimates made by another method: therefore bycatch estimates obtained with different methods should not be compared directly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stock-rebuilding time isopleths relate constant levels of fishing mortality (F), stock biomass, and management goals to rebuilding times for overfished stocks. We used simulation models with uncertainty about FMSY and variability in annual intrinsic growth rates (ry) to calculate rebuilding time isopleths for Georges Bank yellowtail flounder, Limanda ferruginea, and cowcod rockfish, Sebastes levis, in the Southern California Bight. Stock-rebuilding time distributions from stochastic models were variable and right-skewed, indicating that rebuilding may take less or substantially more time than expected. The probability of long rebuilding times increased with lower biomass, higher F, uncertainty about FMSY, and autocorrelation in ry values. Uncertainty about FMSY had the greatest effect on rebuilding times. Median recovery times from simulations were insensitive to model assumptions about uncertainty and variability, suggesting that median recovery times should be considered in rebuilding plans. Isopleths calculated in previous studies by deterministic models approximate median, rather than mean, rebuilding times. Stochastic models allow managers to specify and evaluate the risk (measured as a probability) of not achieving a rebuilding goal according to schedule. Rebuilding time isopleths can be used for stocks with a range of life histories and can be based on any type of population dynamics model. They are directly applicable with constant F rebuilding plans but are also useful in other cases. We used new algorithms for simulating autocorrelated process errors from a gamma distribution and evaluated sensitivity to statistical distributions assumed for ry. Uncertainty about current biomass and fishing mortality rates can be considered with rebuilding time isopleths in evaluating and designing constant-F rebuilding plans.