911 resultados para urine reagent strip
Resumo:
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.
Resumo:
The ultimate bearing capacity of strip foundations subjected to horizontal groundwater flow has been computed by making use of the stress characteristics method which is well known for its capability in solving quite accurately different stability problems in geotechnical engineering. The numerical solution has been generated both for smooth and rough footings placed on frictional soils. A correction factor (fγ) associated with Nγ term, to account for the existence of ground water flow, has been introduced. The variation of fγ has been obtained as a function of hydraulic gradient (i) for different values of soil frictional angle. The magnitude of fγ reduces continuously with an increase in the value of i.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
The effect of consolidation on the undrained bearing capacity of both rough and smooth strip and circular surface foundations is investigated, examining the influence of the magnitude and duration of an applied preload and the initial over-consolidation ratio of the deposit. The investigation comprised small strain finite-element analysis, with the soil response represented by Modified Cam Clay. The results are distilled into dimensionless and generalised forms, from which simple trends emerge. Based on these results, a simple method for predicting the consolidated undrained bearing capacity is proposed.
Resumo:
The vertical uplift resistance of two interfering rigid strip plate anchors embedded horizontally at the same level in clay has been examined. The lower and upper bound theorems of the limit analysis in combination with finite-elements and linear optimization have been employed to compute the failure load in a bound form. The analysis is meant for an undrained condition and it incorporates the increase of cohesion with depth. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (eta c gamma) resulting from the combined components of soil cohesion (c) and soil unit weight (gamma), has been computed for different values of embedment ratio (H/B), the rate of linear increase of cohesion with depth (m) and normalized unit weight (gamma H/c). The magnitude of eta c gamma has been found to reduce continuously with a decrease in the spacing between the anchors, and the uplift resistance becomes minimum for S/B=0. It has been noted that the critical spacing between the anchors required to eliminate the interference effect increases continuously with (1) an increase in H/B, and (2) a decrease in m.
Resumo:
We report the design and synthesis of an amide functionalized microporous organic polymer (Am-MOP) prepared from trimesic acid and p-phenylenediamine using thionyl chloride as a reagent. Polar amide (CONH) functional groups act as a linking unit between the node and spacer and constitute the pore wall of the continuous polymeric network. The strong covalent bonds between the building blocks (trimesic acid and p-phenylenediamine) through amide bond linkages provide high thermal and chemical stability to Am-MOP. The presence of a highly polar pore surface allows selective CO2 uptake at 195 K over other gases such as N-2, Ar, and O-2. The CO2 molecule interacts with amide functional groups via Lewis acid base type interactions as demonstrated through DFT calculations. Furthermore, for the first time Am-MOP with basic functional groups has been exploited for the Knoevenagel condensation reaction between aldehydes and active methylene compounds. Availability of a large number of catalytic sites per volume and confined microporosity gives enhanced catalytic efficiency and high selectivity for small substrate molecules.
Resumo:
A variety of aliphatic and aromatic ketoaldehydes were reduced to the corresponding ketoalcohols with a mixture of sodium borohydride (1.2 equivalents) and sodium carbonate (sixfold molar excess) in water. Reactions were performed at room temperatures over (typically) 2 h, and yields of isolated products generally ranged from 70% to 85%. A biscarbonate-borane complex, (BH3)(2)CO2](2-) 2Na(+), possibly formed from the reagent mixture, is likely the active reductant. The moderated reactivity of this acylborane species would explain the chemoselectivity observed in the reactions. The readily available reagents and the mild aqueous conditions make for ease of operation and environmental compatibility, and make a useful addition to available methodology.
Resumo:
We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.
Resumo:
In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges-Brahmaputra and along the east coast of India. In this paper, we use an eddy-permitting (similar to 25 km resolution) regional ocean general circulation model simulation to quantify the processes responsible for this SSS seasonal cycle. Despite the absence of relaxation toward observations, the model reproduces the main features of the observed SSS seasonal cycle, with freshest water in the northeastern Bay, particularly during and after the monsoon. The model also displays an intense and shallow freshening signal in a narrow (similar to 100 km wide) strip that hugs the east coast of India, from September to January, in good agreement with high-resolution measurements along two ships of opportunity lines. The mixed layer salt budget confirms that the strong freshening in the northern Bay during the monsoon results from the Ganges-Brahmaputra river discharge and from precipitation over the ocean. From September onward, the East India Coastal Current transports this freshwater southward along the east coast of India, reaching the southern tip of India in November. The surface freshening results in an enhanced vertical salinity gradient that increases salinity of the surface layer by vertical processes. Our results reveal that the erosion of the freshwater tongue along the east coast of India is not driven by northward horizontal advection, but by vertical processes that eventually overcome the freshening by southward advection and restore SSS to its premonsoon values. The salinity-stratified barrier layer hence only acts as a ``barrier'' for vertical heat fluxes, but is associated with intense vertical salt fluxes in the Bay of Bengal.
Resumo:
2-Phenylthiazolin-5-one (5, a thioazlactone) condenses with various aldehydes in the presence of the mild base Mn(II) acetate as catalyst in CH2Cl2 solution. This leads to the corresponding Erlenmeyer reaction products (6) in excellent yields in the case of aromatic aldehydes and moderate yields in others. The mildness of the reaction conditions is apparently enabled by the aromaticity of the (putative) intermediate thiazolone anion. The structure and stereochemistry (Z) of the product derived from i-BuCHO was confirmed by single crystal X-ray diffraction. This study overcomes key limitations of the classical Erlenmeyer synthesis and also introduces the relatively nontoxic Mn(II) acetate as a reagent in heterocyclic chemistry.
Resumo:
The pullout capacity of an inclined strip plate anchor embedded in sand has been determined by using the lower bound theorem of the limit analysis in combination with finite elements and linear optimization. The numerical results in the form of pullout factors have been presented by changing gradually the inclination of the plate from horizontal to vertical. The pullout resistance increases significantly with an increase in the horizontal inclination (theta) of the plate especially for theta > 30 degrees. The effect of the anchor plate-soil interface friction angle (delta) on the pullout resistance becomes extensive for a vertical anchor but remains insignificant for a horizontal anchor. The development of the failure zone around the anchor plates was also studied by varying theta and delta. The results from the analysis match well with the theoretical and experimental results reported in literature.
Resumo:
Poly(ether imine) dendritic macromolecules were undertaken to study the reversible dendrimer monomer-megamer assembly-disassembly in aqueous solutions. Synthesis of thiol functionalized poly(ether imine) (PETIM) dendrimers and their covalent aggregation behavior in the aqueous solution of ethanol/water (2:1) is demonstrated. The dendritic megamers were characterized using microscopic techniques. Kinetics of the aggregation behavior was followed using turbidity measurements, light-scattering and atomic force microscopic techniques. Inherent luminescence behavior of PETIM dendrimer monomers was retained in the dendrimer megamers also, which allowed visualization of the megamers through confocal microscopy. Extent of thiol functionalities that remained after the megamer assembly was estimated through Ellman's assay. Subsequent to megamer assembly, disassembly of megamers to dendrimer monomers was conducted, using dithiothreitol reagent. Water-insoluble sudan I dye was encapsulated in dendrimer megamer and subsequent release profile was assessed during the disassembly in aqueous solutions. The studies were conducted using first, second and third generations, representing 4, 8 and 16 sulfhydryl groups at their peripheries of dendrimers, respectively. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.
Resumo:
By using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization, bearing-capacity factors, N-c and N-gamma q, with an inclusion of pseudostatic horizontal seismic body forces, have been determined for a shallow embedded horizontal strip footing placed on sloping ground surface. The variation of N-c and N-gamma q with changes in slope angle (beta) for different values of seismic acceleration coefficient (k(h)) has been obtained. The analysis reveals that irrespective of ground inclination and the embedment depth of the footing, the factors N-c and N-gamma q decrease quite considerably with an increase in k(h). As compared with N-c, the factor N-gamma q is affected more extensively with changes in k(h) and beta. Unlike most of the results reported in literature for the seismic case, the present computational results take into account the shear resistance of soil mass above the footing level. An increase in the depth of the embedment leads to an increase in the magnitudes of both N-c and N-gamma q. (C) 2014 American Society of Civil Engineers.
Resumo:
A method is presented for determining the ultimate bearing capacity of a circular footing reinforced with a horizontal circular sheet of reinforcement placed over granular and cohesive-frictional soils. It was assumed that the reinforcement sheet could bear axial tension but not the bending moment. The analysis was performed based on the lower-bound theorem of the limit analysis in combination with finite elements and linear optimization. The present research is an extension of recent work with strip foundations reinforced with different layers of reinforcement. To incorporate the effect of the reinforcement, the efficiency factors eta(gamma) and eta(c), which need to be multiplied by the bearing capacity factors N-gamma and N-c, were established. Results were obtained for different values of the soil internal friction angle (phi). The optimal positions of the reinforcements, which would lead to a maximum improvement in the bearing capacity, were also determined. The variations of the axial tensile force in the reinforcement sheet at different radial distances from the center were also studied. The results of the analysis were compared with those available from literature. (C) 2014 American Society of Civil Engineers.