969 resultados para unrestricted grazing
Resumo:
Predictions about the ecological consequences of oceanic uptake of CO2 have been preoccupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks the direct effects of CO2 on non-calcareous taxa, particularly those that play critical roles in ecosystem shifts. We used two experiments to investigate whether increased CO2 could exacerbate kelp loss by facilitating non-calcareous algae that, we hypothesized, (i) inhibit the recovery of kelp forests on an urbanized coast, and (ii) form more extensive covers and greater biomass under moderate future CO2 and associated temperature increases. Our experimental removal of turfs from a phase-shifted system (i.e. kelp- to turf-dominated) revealed that the number of kelp recruits increased, thereby indicating that turfs can inhibit kelp recruitment. Future CO2 and temperature interacted synergistically to have a positive effect on the abundance of algal turfs, whereby they had twice the biomass and occupied over four times more available space than under current conditions. We suggest that the current preoccupation with the negative effects of ocean acidification on marine calcifiers overlooks potentially profound effects of increasing CO2 and temperature on non-calcifying organisms.
Resumo:
Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.
Resumo:
Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months' growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment.