926 resultados para tumor necrosis factor-alpha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early growth response-1 (Egr-1) is expressed in human airways and found to modulate tumor necrosis factor, immunoglobulin E (IgE), airway responsiveness, and interleukin-13-induced inflammation in mice. We investigated the effects of Chinese-tagging singl

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the TNF superfamily members, participating in many biological processes including cell proliferation and apoptotic death. In this study, a TRAIL gene was cloned from a perciform fish, the mandarin fish Siniperca chuatsi, a major cultured fish in China's aquaculture, and is named as SCTRAIL for S. chuatsi TRAIL. The full-length cDNA of SCTRAIL is 1359 bp, encoding a 283-amino-acid protein. This deduced protein contains the CYS231, a 23-mer fragment of transmembrane region, a glycosylation site and a TNF family signature, all of which are conserved among TRAIL members. SCTRAIL gene consists of six exons, with five intervening introns, spaced over approximately 9 kb of genomic sequence. Southern blotting demonstrated that the SCTRAIL gene is present as a single copy in mandarin fish genome. A 620 bp promoter region obtained by genome walking contains a number of putative transcription factor binding sites, such as Oct-1, Sp-1, NF-1, RAP-1, C/EBPaLp, NF-kappa B and AP-1. The SCTRAIL is constitutively expressed in all the analyzed tissues, as revealed by RT-PCR, which is confirmed by Western blotting analysis using polyclonal antibody against bacteria-derived recombinant SCTRAIL protein. As an apoptosis-inducing ligand, the overexpression of SCTRAIL but not the mutant SCTRAIL-C203S in HeLa cells induced changes characteristic of apoptosis, including chromatin condensation, nucleus fragmentation, DNA ladder, and increase of sub-G0/G1 cells in FACS analysis. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRAIL (Apo2 ligand) described as a type II transmembrame protein belonging to the TNF superfamily can induce apoptotic cell death in a variety of cell types. In the present study, a putative cDNA sequence encoding the 299 amino acids of TRAIL (GC-TRAIL) and its genomic organization were identified in grass carp Ctenopharyngodon idella. The predicted GC-TRAIL sequence showed 44 and 41% identities to chicken and human TRAILs, respectively. In a domain search, a tumor necrosis factor homology domain (THD) was identified in the C-terminal portion of TRAILs. The GC-TRAIL gene consists of five exons, with four intervening introns, spaced over approximately 4 kb of genomic sequence. Analysis of GC-TRAlL promoter region revealed the presence of a number of putative transcription factor binding sites, such as Sp1, NF-kappaB, AP-1, GATA, NFAT, HNF, STAT, P53 and IRFI sequences which are important for the expression of other TNF family members. Phylogenetic analysis placed GC-TRAIL and the putative zebrafish (Danio rerio) TRAIL obtained from searching the zebrafish database into one separate cluster near mammalian TRAIL genes, but apart from the reported zebrafish TRAIL-like protein, indicating that the GC-TRAIL is an authentic fish TRAIL. Expression analysis revealed that GC-TRAIL is expressed in many tissues, such as in gills, liver, trunk kidney, head kidney, intestine and spleen. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potential roles of Clq/tumor necrosis factor (TNF) superfamily proteins have been observed in vertebrate oogenesis and oocyte maturation, but no ovary-specific member has been identified so far. In this study, we have cloned and identified a novel member of Clq family with a Clq domain in the C-terminal from fully grown oocyte cDNA library of color crucian carp and demonstrated that the gene might be specifically expressed in ovary and therefore designated as Carassius auratus ovary-specific Clq-like factor, CaOClq-like factor. It encodes a 213 amino acid protein with a 17 amino acid signal peptide. There is only one protein band of about 24.5 kDa in the extracts from phase I to phase IV oocytes, but two positive protein bands are detected in the extracts of mature eggs and fertilized eggs. Furthermore, the mobility shift of the smaller target protein band cannot be eliminated by phosphatase treatment, but the larger protein band increases its mobility on the gel after phosphatase treatment, suggesting that the larger protein might be a phosphorylated form. Immunofluorescence localization indicates that the CaOClq-like proteins localize in cytoplasm, cytoplasm membrane and egg envelope of the oocytes at cortical granule stage and vitellogenesis stage, whereas they were compressed to cytoplasm margin in ovulated mature eggs and discharged into perivitelline space between cytoplasm membrane and egg envelope after egg fertilization. Further studies on distribution and translocation mechanism of the CaOClq-like factor will be benefit to elucidate the unique function in oogenesis, oocyte maturation and egg fertilization. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetic analysis of the interaction between tumor necrosis factor(TNF) and its monoclonal antibody was performed by surface plasmon resonance(SPR) technique. The monoclonal antibody was immobilized to the surface of CM5 sensor chip by amine coupling. TNF at different concentrations was injected across the mAb immobilized surface. The interaction was recorded in real time and could be seen on the sensorgram. One cycle, including association, dissociation and regeneration, lasted no more than 15 min. The interaction results was evaluated using 1 : 1 Langmuir binding model. The kinetic rate constants were calculated to be: k =1.68 X 10(3) L (.) mol(-1) (.) s(-1), k(d) = 1.73 X 10(-4) s(-1), and the affinity constants K-A = 9. 7 X 10(3) L (.) mol(-1), K-r)= 1. 03 X 10(-7) Mol (.) L-1. The X-2 was 3.47, which showed that the interaction is consistent with the 1 : I model. We can see from the results that although there are two binding sites in one mAb molecule, TNF reacts with each site in an independent and noncooperative manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic human acute-phase protein and is found at increased levels in the blood during episodes of inflammation. CRP was generally thought to be produced only by hepatocytes; however, several studies have shown extrahepatic synthesis of CRP. A previous study showed that PM10 and ultrafine carbon black (ufCB) were able to induce CRP expression in A549 cells. This study aims to examine the factors that lead to the production of CRP in A549 cells. A549 human lung epithelial cells were treated with cytokines (interleukin 6, tumor necrosis factor , interferon , or interleukin 1) or carbon particles (CB and ufCB) for 18 h. It was found that CRP could be expressed within the cells and that CRP was secreted from the cells particularly with tumor necrosis factor , CB and ufCB treatments. It was also found that this expression of CRP with CB and ufCB treatments was dependent on nuclear factor kappa B (NFB). The expression of CRP in A549 cells may indicate an important role for CRP expression and secretion from lung epithelial cells in response to inflammatory stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Inflammatory bowel disease (IBD) is hypothesized to result from stimulation of immune responses against resident intestinal bacteria within a genetically susceptible host. Mast cells may play a critical role in IBD pathogenesis, since they are typically located just beneath the intestinal mucosal barrier and can be activated by bacterial antigens. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated effects of mast cells on inflammation and associated neoplasia in IBD-susceptible interleukin (IL)-10-deficient mice with and without mast cells. IL-10-deficient mast cells produced more pro-inflammatory cytokines in vitro both constitutively and when triggered, compared with wild type mast cells. However despite this enhanced in vitro response, mast cell-sufficient Il10(-/-) mice actually had decreased cecal expression of tumor necrosis factor (TNF) and interferon (IFN)-gamma mRNA, suggesting that mast cells regulate inflammation in vivo. Mast cell deficiency predisposed Il10(-/-) mice to the development of spontaneous colitis and resulted in increased intestinal permeability in vivo that preceded the development of colon inflammation. However, mast cell deficiency did not affect the severity of IBD triggered by non-steroidal anti-inflammatory agents (NSAID) exposure or helicobacter infection that also affect intestinal permeability. CONCLUSIONS/SIGNIFICANCE: Mast cells thus appear to have a primarily protective role within the colonic microenvironment by enhancing the efficacy of the mucosal barrier. In addition, although mast cells were previously implicated in progression of sporadic colon cancers, mast cells did not affect the incidence or severity of colonic neoplasia in this inflammation-associated model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depletional strategies directed toward achieving tolerance induction in organ transplantation have been associated with an increased incidence and risk of antibody-mediated rejection (AMR) and graft injury. Our clinical data suggest correlation of increased serum B cell activating factor/survival factor (BAFF) with increased risk of antibody-mediated rejection in alemtuzumab treated patients. In the present study, we tested the ability of BAFF blockade (TACI-Ig) in a nonhuman primate AMR model to prevent alloantibody production and prolong allograft survival. Three animals received the AMR inducing regimen (CD3-IT/alefacept/tacrolimus) with TACI-Ig (atacicept), compared to five control animals treated with the AMR inducing regimen only. TACI-Ig treatment lead to decreased levels of DSA in treated animals at 2 and 4 weeks posttransplantation (p < 0.05). In addition, peripheral B cell numbers were significantly lower at 6 weeks posttransplantation. However, it provided only a marginal increase in graft survival (59 ± 22 vs. 102 ± 47 days; p = 0.11). Histological analysis revealed a substantial reduction in findings typically associated with humoral rejection with atacicept treatment. More T cell rejection findings were observed with increased graft T cell infiltration in atacicept treatment, likely secondary to the graft prolongation. We show that BAFF/APRIL blockade using concomitant TACI-Ig treatment reduced the humoral portion of rejection in our depletion-induced preclinical AMR model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.