933 resultados para trunk wood
Resumo:
Ten growth or wood-quality traits were assessed in three nearby Corymbia citriodora subsp. variegata (CCV) open-pollinated family-within-provenance trials (18 provenances represented by a total of 374 families) to provide information for the development of a breeding program targeting both pulp and solid-wood products. Growth traits (diameter at breast high over bark [DBH], height and conical volume) were assessed at 3 and 7 years of age. Wood-quality traits (density [DEN], Kraft pulp yield [KPY], modulus of elasticity [MoE] and microfibril angle [MfA]) were predicted using near-infrared spectroscopy on wood samples collected from these trials when aged between 10 and 12 years. The high average KPY, DEN and MoE, and low average MfA observed indicates CCV is very suitable for both pulp and timber products. All traits were under moderate to strong genetic control. In across- trials analyses, high (>0.4) heritability estimates were observed for height, DEN, MoE and MfA, while moderate heritability estimates (0.24 to 0.34) were observed for DBH, volume and KPY. Most traits showed very low levels of genotype × site interaction. Estimated age–age genetic correlations for growth traits were strong at both the family (0.97) and provenance (0.99) levels. Relationships among traits (additive genetic correlation estimates) were favourable, with strong and positive estimates between growth traits (0.84 to 0.98), moderate and positive values between growth and wood-quality traits (0.32 to 0.68), moderate and positive between KPY and MoE (0.64), and high and positive between DEN and MoE (0.82). However, negative (but favourable) correlations were detected between MfA and all other evaluated traits (−0.31 to −0.96). The genetic correlation between the same trait expressed on two different sites, at family level, ranged from 0.24 to 0.42 for growth traits, and from 0.29 to 0.53 for wood traits. Therefore simultaneous genetic improvement of growth and wood property traits in CCV for the target environment in south-east Queensland should be possible, given the moderate to high estimates of heritability and favourable correlations amongst all traits studied, unless genotype × site interactions are greater than was evident. © 2016 NISC (Pty) Ltd
Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment
Resumo:
Background: A study of the correlation between the particle size of lignocellulosic substrates and ultrasound pretreatment on the efficiency of further enzymatic hydrolysis and fermentation to ethanol. Results: Themaximumconcentrations of glucose and, to a lesser extent, di- and trisaccharideswere obtained in a series of experiments with 48-h enzymatic hydrolysis of pine rawmaterials ground at 380–400 rpm for 30min. The highest glucose yield was observed at the end of the hydrolysis with a cellulase dosage of 10 mg of protein (204 ± 21 units CMCase per g of sawdust). The greatest enzymatic hydrolysis efficiency was observed in a sample that combined two-stage grinding at 400 rpm with ultrasonic treatment for 5–10 min at a power of 10 W per kg of sawdust. The glucose yield in this case (35.5 g glucose l−1) increased twofold compared to ground substrate without further preparation. Conclusions: Using a mechanical two-stage grinding of lignocellulosic raw materials with ultrasonication increases the efficiency of subsequent enzymatic hydrolysis and fermentation.
Resumo:
Driven by the global trend in the sustainable economy development and environmental concerns, the exploring of plant-derived biomaterials or biocomposites for potential biomedical and/or pharmaceutical applications has received tremendous attention. Therefore, the work of this thesis is dedicated to high-value and high-efficiency utilization of plant-derived materials, with the focus on cellulose and hemicelluloses in the field of biomedical applications in a novel biorefinery concept. The residual cellulose of wood processing waste, sawdust, was converted into cellulose nanofibrils (CNFs) with tunable surface charge density and geometric size through 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-mediated oxidation and mechanical defibrillation. The sawdust-based CNFs and its resultant free-standing films showed comparable or even better mechanical properties than those from a commercial bleached kraft pulp at the same condition, demonstrating the feasibility of producing CNFs and films thereof with outstanding mechanical properties from birch sawdust by a process incorporated into a novel biorefinery platform recovering also polymeric hemicelluloses for other applications. Thus, it is providing an efficient route to upgrade sawdust waste to valuable products. The surface charge density and geometric size of the CNFs were found to play key roles in the stability of the CNF suspension, as well as the gelling properties, swelling behavior, mechanical stiffness, morphology and microscopic structural properties, and biocompatibility of CNF-based materials (i.e. films, hydrogels, and aerogels). The CNFs with tunable surface chemistry and geometric size was found promising applications as transparent and tough barrier materials or as reinforcing additive for production of biocomposites. The CNFs was also applied as structural matrices for the preparation of biocomposites possessing electrical conductivity and antimicrobial activity by in situ polymerization and coating of polypyrrole, and incorporation of silver nanoparticles, which make the material possible for potential wound healing application. The CNF-based matrices (films, hydrogels, and aerogels) with tunable structural and mechanical properties and biocompatibility were further prepared towards an application as 3D scaffolds in tissue engineering. The structural and mechanical strength of the CNF matrices could be tuned by controlling the charge density of the nanocellulose, as well as the pH and temperature values of the hydrogel formation conditions. Biological tests revealed that the CNF scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells, suggesting the usefulness of the CNF-based 3D matrices in supporting crucial cellular processes during cell growth and proliferation. The CNFs was applied as host materials to incorporate biomolecules for further biomedical application. For example, to investigate how the biocompatibility of a scaffold is influenced by its mechanical and structural properties, these properties of CNF-based composite matrices were controlled by incorporation of different hemicelluloses (O-acetyl galactoglucomanan (GGM), xyloglucan (XG), and xylan) into CNF hydrogel networks in different ratios and using two different approaches. The charge density of the CNFs, the incorporated hemicellulose type and amount, and the swelling time of the hydrogels were found to affect the pore structure, the mechanical strength, and thus the cells growth in the composite hydrogel scaffolds. The mechanical properties of the composite hydrogels were found to have an influence on the cell viability during the wound healing relevant 3T3 fibroblast cell culture. The thusprepared CNF composite hydrogels may work as promising scaffolds in wound healing application to provide supporting networks and to promote cells adhesion, growth, and proliferation.
Resumo:
vol.I. Introduction to Athyrium.--vol.II. Blechnum to Nothochlaena.--vol.III. Ochropteris to Woodwardia, and Selaginella.
Resumo:
Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL
Resumo:
Combining information on kinetics and kinematics of the trunk during gait is important for both clinical and research purposes, since it can help in better understanding the mechanisms behind changes in movement patterns in chronic low back pain patients. Although three-dimensional gait analysis has been used to evaluate chronic low back pain and healthy individuals, the reliability and measurement error of this procedure have not been fully established. The main purpose of this thesis is to gain a better understanding about the differences in the biomechanics of the trunk and lower limbs during gait, in patients and healthy individuals. To achieve these aims, three studies were developed. The first two, adopted a prospective design and focused on the reliability and measurement error of gait analysis. In these test-retest studies, chronic low back pain and healthy individuals were submitted to a gait assessment protocol, with two distinct evaluation moments, separated by one week. Gait data was collected using a 13-camera opto-electronic system and three force platforms. Data analysis included the computation of time-distance parameters, as well as the peak values for lower limb and trunk joint angles/moments. The third study followed a cross sectional design, where gait in chronic low back pain individuals was compared with matched controls. Step-to-step variability of the thoracic, lumbar and hips was calculated, and step-to-step deviations of these segments from their average pattern (residual rotations) were correlated to each other. The reliability studies in this thesis show that three-dimensional gait analysis is a reliable and consistent procedure for both chronic low back pain and healthy individuals. The results suggest varied reliability indices for multi-segment trunk joint angles, joint moments and time-distance parameters during gait, together with an acceptable level of error (particularly regarding sagittal plane). Our findings also show altered stride-to-stride variability of lumbar and thoracic segments and lower trunk joint moments in patients. These kinematic and kinetic results lend support to the notion that chronic low back pain individuals exhibit a protective movement strategy.
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.
Resumo:
Paraffin has been used as surface protection of wood throughout the ages but its use for impregnation to improve wood resistance to biodegradation is recent. This study determined the main improvements on wood properties with paraffin impregnation. Healthy Pinus pinaster Ait. wood was impregnated with paraffin at different levels using a hot–cold process. Weight gain, equilibrium moisture content and dimensional stability (ASE) at 35 and 65 % relative humidity, termite durability against Reticulitermes grassei (Clément), bending strength, bending stiffness (MOE) and Janka hardness were determined. Density increased from 0.57 to 0.99, ASE ranged between 38–96 % and 16–71 % for 35 and 65 % relative humidity, respectively. Equilibrium moisture content decreased from 9.9 and 12.0 % to 0.8 and 3.6 % for 35 and 65 % relative humidity. Termite durability improved from level 4 to level 3 of attack, and higher termite mortality was found in treated wood (52 % against 17 %). Bending strength (MOR) increased with paraffin weight gain, reaching a 39 % increase. MOE also increased by about 13 % for wood with a weight gain around 80 %. Janka hardness increased significantly reaching about 40 % for wood with 80 % weight gain. Paraffin impregnated wood has improved properties with regard to equilibrium moisture content, dimensional stability and density, bending strength and Janka hardness, and resistance against termites.
Resumo:
This work intended to give a perspective of industrial wood protection in Portugal. A survey was made of the companies treating wood mainly for use classes 3 and 4 such as autoclave treatments with biocides and wood modification procedures. Currently there are 23 companies with 33 production plants with an autoclave installed for wood preservation by impregnation. There are also two companies producing modified wood by thermal treatment. Most of the plants are located in the central and northern regions of Portugal. The leading preservation chemicals used in Portugal are Tanalith E and Celcure brands. The main wood species used in all companies is Pinus pinaster from local producers. The products commercialized by the treating companies are diverse: pre-fabricated houses, garden furniture and playgrounds, decks, poles, stakes, and sawn wood. Modified wood producers sell mostly decks and cladding. Considerable changes are expected in the next few years due to the requirements of European Directives and the typical constraints of the Portuguese market.
Resumo:
The aim of present work was to investigate the phenolic and volatile composition of cherry, acacia, and oak (from different species) wood chips. By the use of HPLC-DAD 18 different phenolic compounds were detected and quantified while for volatile composition, 33 different compounds were detected by GC-MS. In general, wood samples from oak species showed the higher number of phenolic compounds detected, while cherry wood samples showed the lowest levels. In addition, some individual phenolic compounds were detected, specifically in some wood samples, such as robinetin in acacia woods and naringenin in cherry wood. For volatile composition, cherry wood chips samples showed the lowest volatile composition followed by increasing order by acacia, French, Portuguese and American wood chip samples. Oak wood chip samples from American species showed the highest volatile content, as a result of high levels of several specific compounds (furfural, 5-methyfurfural, β-methyl-γ-octalactones, guaiacol, vanillin and siringaldehyde).
Resumo:
Companies operating in the wood processing industry need to increase their productivity by implementing automation technologies in their production systems. An increasing global competition and rising raw material prizes challenge their competitiveness. Yet, too extensive automation brings risks such as a deterioration in situation awareness and operator deskilling. The concept of Levels of Automation is generally seen as means to achieve a balanced task allocation between the operators’ skills and competences and the need for automation technology relieving the humans from repetitive or hazardous work activities. The aim of this thesis was to examine to what extent existing methods for assessing Levels of Automation in production processes are applicable in the wood processing industry when focusing on an improved competitiveness of production systems. This was done by answering the following research questions (RQ): RQ1: What method is most appropriate to be applied with measuring Levels of Automation in the wood processing industry? RQ2: How can the measurement of Levels of Automation contribute to an improved competitiveness of the wood processing industry’s production processes? Literature reviews were used to identify the main characteristics of the wood processing industry affecting its automation potential and appropriate assessment methods for Levels of Automation in order to answer RQ1. When selecting the most suitable method, factors like the relevance to the target industry, application complexity or operational level the method is penetrating were important. The DYNAMO++ method, which covers both a rather quantitative technical-physical and a more qualitative social-cognitive dimension, was seen as most appropriate when taking into account these factors. To answer RQ 2, a case study was undertaken at a major Swedish manufacturer of interior wood products to point out paths how the measurement of Levels of Automation contributes to an improved competitiveness of the wood processing industry. The focus was on the task level on shop floor and concrete improvement suggestions were elaborated after applying the measurement method for Levels of Automation. Main aspects considered for generalization were enhancements regarding ergonomics in process design and cognitive support tools for shop-floor personnel through task standardization. Furthermore, difficulties regarding the automation of grading and sorting processes due to the heterogeneous material properties of wood argue for a suitable arrangement of human intervention options in terms of work task allocation. The application of a modified version of DYNAMO++ reveals its pros and cons during a case study which covers a high operator involvement in the improvement process and the distinct predisposition of DYNAMO++ to be applied in an assembly system.
Resumo:
Le bois est un matériau souvent utilisé par les architectes pour améliorer l’ambiance générale d’un espace, mais peu de recherches en présentent l’impact réel du matériau sur les impressions visuelles et les effets lumineux. Cette recherche étudie l’influence de la matérialité du bois par rapport à la création d’ambiances d’éclairage spécifiques dans l’architecture. Plus particulièrement, elle se concentre sur l’impact des panneaux décoratifs en bois à générer de la diversité lumineuse dans les espaces intérieurs et son potentiel à améliorer la satisfaction environnementale et l’efficacité énergétique. La recherche utilise des maquettes à l’échelle pour leur précision dans la représentation des ambiances lumineuses d’espaces éclairés naturellement ainsi que les technologies récentes d’imagerie digitale pour capturer et analyser les résultats. La méthodologie permet la comparaison entre les différents réglages des espaces intérieurs créés par une sélection des types de matérialités du bois: la réflectance (valeur), la couleur et la réflectivité. Les modalités spatiales sont comparées en présence d’ensoleillement direct et sous des conditions de ciel couvert puisque les modèles d’éclairage et les ambiances diffèrent considérablement. Les résultats permettent d’établir une discussion sur les ambiances en termes de brillance et de contraste, sur la couleur ainsi que la répartition des zones lumineuses dans l’espace. La recherche souligne le rôle des matérialités que peuvent prendre le bois pour optimiser la diversité lumineuse et la création d’ambiances visuellement confortables, ainsi que ses possibilités d’améliorer les ambiances architecturales par rapport à la lumière.