929 resultados para transpiration water balance
Resumo:
This report is a technical assessment of the hydrological environment of the southern Moreton Bay islands and follows the terms of reference supplied by the then Queensland Department of Natural Resources and Water. The terms of reference describe stage 1 as a condition assessment and stage 2 as an assessment of the implications of water planning scenarios on future condition. This report is the first stage of a two-stage investigation whose primary purpose is to identify and assess groundwater dependent ecosystems (GDEs) and the groundwater flow regimes necessary to support them. Within this context, the groundwaters themselves are also considered and comment made on their condition. Information provided in this report will inform an amendment to the Logan Basin Water Resource Plan to incorporate the southern Moreton Bay islands. The study area is the water resource plan amendment area, which includes North and South Stradbroke islands and the smaller islands between these and the mainland, including the inhabited smaller rocky islands—namely, Macleay, Russell, Karragarra, Lamb and Coochiemudlo islands. This assessment is largely a desktop study based on existing information, but incorporates some field observations, input from experts in specific areas and community representatives, and the professional experience and knowledge of the authors. This report reviews existing research and information on the southern Moreton Bay area with an emphasis on North Stradbroke Island, as it represents the largest and most regionally significant groundwater resource in southern Moreton Bay. The report provides an assessment of key waterrelated environmental features, their condition and their degree of dependence on groundwater. This report also assesses the condition and status of ecosystems within this region. In addition, the report identifies information gaps, uncertainties and potential impacts; reviews groundwater models that have been developed for North Stradbroke Island; and makes recommendations on monitoring and research needs.
Resumo:
Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (∼25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (<25 nm) were accessible to CD4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases.
Resumo:
The robust and diversely useful isoindoline nitroxide, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (1; CTMIO), has previously been synthesised in low-to-moderate yields from phthalic anhydride (3). Recent interest in its biological potential as a potent antioxidant and in other areas has seen an increased demand for its production. Herein, three new synthetic routes to CTMIO are presented and their efficiencies assessed. Two routes, via the nitrile 9 and the formyl compound 11, derive from 5-bromo-1,1,3,3-tetramethylisoindoline (6). The third approach starts from the readily accessible starting material, 4-methylphthalic anhydride (12), and proceeds by a methylarene oxidation with potassium permanganate. The three new approaches yield CTMIO in comparable overall yields (16–18 %); however, the synthetic efficiency is most improved when employing the nitrile intermediate 9.
Resumo:
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.
Resumo:
The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT) on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points(<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours) in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.
Resumo:
Microbiology is the science devoted lo the study of organisms that are too small to be seen by the naked eye. These microorganisms are a large and diverse group of free-living forms that exist as single cells or cell clusters. Being free-living, microbial cells are distinct from the cells of animals and plants as the latter are not able to live alone in nature but only in characteristic groups. A single microbial cell, generally, is able to carry out its life processes of growth, respiration and reproduction independently of other cells, either of the same kind or of different kinds. There are five subdisciplines of microbiology: (a) the study of bacteria (bacteriology); (b) the study of viruses (virology); (c) the study of algae (phycology); (d) the study of fungi (mycology); and (e) the study of protozoa (protozoology). In the examination of the environment, all five areas of microbiology are studied. This becomes obvious when discussing the significance of each of these groups of organisms in relation to human health.
Resumo:
This paper discusses the nature of the conceptual structure in art practice, by example. It draws on insights gained from a practice based research (PBR) approach to making art. The PBR methods used include Reflective Practice and are briefly described. They have informed an understanding of the conceptual structure as an instance of problem framing. This is demonstrated by two creative examples, taken from two interactive artworks. These were informed by an evolving conceptual structure concerned with water.
Resumo:
Bargara Pasturage Reserve: Future Visions This exhibition showcases the work of Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students in response to issues of sustainability in a coastal wetland known as the Bargara Pasturage Reserve; an exemplar of the many issues facing sensitive coastal places in Queensland today. The 312ha Pasturage Reserve at Bargara is the only biofilter between the pressures of Bargara’s urban and tourism expansion, surrounding sugarcane farming, and the Great Sandy Marine Park, including the largest concentration of nesting marine turtles on the eastern Australian mainland. This ephemeral wetland, while struggling to fulfil its coastal biofiltration function, is also in high demand for passive recreation, and the project partners’ priorities were to meet both of these challenges. The students were required to plan and design for the best balance possible amongst, but not limited to: wetland and coastal ecological health, enhancement of cultural heritage and values, sustainable urban development, and local economic health. To understand these challenges, QUT staff and students met with partners, visited and analysed the Pasturage Reserve, spent time in and around Bargara talking to locals and inviting dialogue with Indigenous representatives and the South Sea Islander community. We then went home to Brisbane to undertake theoretical and technical research, and then worked to produce 11 Strategic Plans, 2 Environmental Management Plans and 33 Detailed Designs. One group of students analysed the Bargara coastal landscape as an historical and ongoing series of conversations between ecological systems, cultural heritage, community and stakeholders. Another group identified the landscape as neither ‘urban,’ ‘rural,’ nor ‘natural,’ instead identifying it metaphorically as a series of layered thematic ‘fields’ such as water, conservation, reconciliation, and educational fields. These landscape analyses became the organising mechanisms for strategic planning. An outstanding Strategic Plan was produced by Zhang, Lemberg and Jensen, entitled Metanoia, which means to ‘make a change as the result of reflection on values’. Three implementation phases of “flow”, “flux”, and “flex” span twenty-five years, and present a vision a coastal and marine research and conservation hub, with a focus on coastal wetland function, turtle habitat and coral reef conservation. An Environmental Management Plan by Brand and Stickland focuses on protecting and improving wetland biodiversity and habitat quality, and increasing hydrological and water quality function; vital in a coastal area of such high conservation value. After the planning phase, students individually developed detailed design proposals responsive to their plans. From Metanoia, Zhang concentrated on wetland access and interpretation, proposing four focal places to form the nucleus of a wider pattern of connectivity, and to encourage community engagement with coastal environmental management and education. Jensen tackled the thorny issue of coastal urban development, proposing a sensitive staged eco-village model which maintains both ecological and recreational connectivity between the wetland and the marine environment. This project offered QUT’s partners many innovative options to inform their future planning. BSC, BMRG and Oceanwatch Australia are currently engaged in the investigation of on-ground opportunities drawing on these options.
Resumo:
Despite the widespread use of paper, plastic or ceramics in dielectric capacitors, water has not been commonly used as a dielectric due to its tendency to become conductive as it easily leaches ions from the environment. We show here that when water is confined between graphene oxide sheets, it can retain its insulating nature and behave as a dielectric. A hydrated graphene oxide film was used as a dielectric spacer to construct a prototype water-dielectric capacitor. The capacitance depends on the water content of the hydrated GO film as well as the voltage applied to the device. Our results show that the capacitance per unit area of the GO film is in the range of 100–800 mF cm �2, which is 5–40 times that of the double layer capacitance per surface area of activated carbon.
Resumo:
Australia is the driest inhabited continent in the world and persisting droughts have triggered a move toward sensible and sustainable water consumption. Understanding how and where water is consumed in households enables streamlined development of demand management programs and efficient engineering of water infrastructure. End use water consumption analysis is required to gain necessary empirical data of how and where water is consumed. Several end use water consumption studies have been conducted within Australia and around the world with varying results produced. This pilot study paper provides preliminary data from the Gold Coast Watersaver End Use Project which is currently underway. Specifically, the paper includes water end use category volumetric and percentage break downs for 18 single and 32 dual reticulated homes on the Gold Coast (i.e. 50 in total). Moreover, a comparitive analysis between each of the individual households water end use levels is discussed along with other national studies previously completed. The paper finishes with an overview of the greater 200 home end use study conducted on the Gold Coast and its key deliverables and research outcomes.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.
Resumo:
Exposure to cold air, whole body cryotherapy (WBC), is a novel treatment employed by athletes. In WBC individuals dressed in minimal clothing are exposed to a temperature below -100°C for 2-4 min. The use of WBC has been advocated as a treatment for various knee injuries. PURPOSE: To compare the effects of two modalities of cryotherapy, -110°C WBC and 8°C cold water immersion (CWI) on knee skin temperature (Tsk). METHODS: With ethical approval and written informed consent 10 healthy active male participants (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat (measured by DXA), 7.6 ± 2.0 mm patellar skin fold; mean±SD) were exposed to 4 min of CWI and WBC. The treatment order was randomised in a controlled crossover design, with a minimum of 7 days between treatments. During WBC participants stood in a chamber (-60±3°C) for 20 s before entering the main chamber (-110°C±3°C) where they remained for 3 min and 40 s. For CWI participants were seated in a tank filled with cold water (8±0.3°C) and immersed to the level of the sternum for 4 min. Right knee Tsk was assessed via non-contact, infrared thermal imaging. A quadrilateral region of interest was created using inert markers placed 5 cm above and below the most superior and inferior aspect of the patella. Tsk within this quadrilateral was recorded pre, immediately post and every 10 min thereafter for 60 min. Tsk changes were examined using a two-way (treatment x time) repeated measures analyses of variance. In addition, a paired sample t-test was used to compare baseline Tsk before both treatments. RESULTS: Knee Tsk was similar before treatment (WBC: 29.9±0.7°C, CWI: 29.6±0.9°C, p>0.05). There was a significant main effect for treatment (p<0.05) and time (p<0.001). Compared to baseline, Tsk was significantly reduced (p<0.05) immediately post and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Knee Tsk was lower (p<0.05) immediately after WBC (19.0±0.9°C) compared to CWI (20.5±0.6°C). However, from 10 to 60 min post, knee Tsk was lower (p<0.05) following the CWI treatment. CONCLUSION: WBC elicited a greater decrease in knee Tsk compared to CWI immediately after treatment. However, both modalities display different recovery patterns and Tsk after CWI was significantly lower than WBC at 10, 20, 30, 40, 50 and 60 min after treatment.
Resumo:
For more than a hundred years water rights were granted in accordance with the legislation of the states and territories. Until recently, this legislation conferred a relatively unlimited discretion on the relevant regulatory institutions. Over the past 15 years, the Commonwealth has taken a greater interest in how water resources should be managed: first by formulating and funding policies and strategies through COAG, and then by enacting the Water Act 2007. This Act has created a much more prescriptive regime for planning and managing Australia’s water resources while at the same time entrusting its operational implementation to the states and territories. This has the potential to create tensions between the legal regimes of the Commonwealth and those of the states and territories. This article seeks to examine some of these issues.
Resumo:
Background WSUD implementation in the Gold Coast City Council area commenced more than a decade ago. As a result, Council is expected to be in possession of WSUD assets valued at over tens of million dollars. The Gold Coast City Council is responsible for the maintenance and long-term management of these WSUD assets. Any shortcoming in implementation of best WSUD practices can potentially result in substantial liabilities and ineffective expenditure for the Council in addition to reduced efficiencies and outcomes. This highlights the importance of periodic auditing of WSUD implementation. Project scope The overall study entailed the following tasks: * A state-of-the-art literature review of the conceptual hydraulic and water quality treatment principles, current state of knowledge in relation to industry standards, best practice and identification of knowledge gaps in relation to maintenance and management practices and potential barriers to the implementation of WSUD. * Council stakeholder interviews to understand current practical issues in relation to the implementation of WSUD and the process of WSUD application from development application approval to asset management. * Field auditing of selected WSUD systems for condition assessment and identification of possible strengths and weaknesses in implementation. * Review of the Land Development Guidelines in order to identify any gaps and to propose recommendations for improvement. Conclusions Given below is a consolidated summary of the findings of the study undertaken. State-of-the-art literature review Though the conceptual framework for WSUD implementation is well established, the underlying theoretical knowledge underpinning the treatment processes and maintenance regimes and life cycle costing are still not well understood. Essentially, these are the recurring themes in the literature, namely, the inadequate understanding of treatment processes and lack of guidance to ensure specificity of maintenance regimes and life cycle costing of WSUDs. The fundamental barriers to successful WSUD implementation are: * Lack of knowledge transfer – This essentially relates to the lack of appropriate dissemination of research outcomes and the common absence of protocols for knowledge transfer within the same organisation. * Cultural barriers – These relate to social and institutional factors, including institutional inertia and the lack of clear understanding of the benefits. * Fragmented responsibilities – This results from poor administrative integration within local councils in relation to WSUDs. * Technical barriers – These relate to lack of knowledge on operational and maintenance practices which is compounded by model limitations and the lack of long-term quantitative performance evaluation data. * Lack of engineering standards – Despite the availability of numerous guidelines which are non-enforceable and can sometimes be confusing, there is a need for stringent engineering standards. The knowledge gaps in relation to WSUDs are only closing very slowly. Some of the common knowledge gaps identified in recent publications have been recognised almost a decade ago. The key knowledge gaps identified in the published literature are: * lack of knowledge on operational and maintenance practices; * lack of reliable methodology for identifying life cycle issues including costs; * lack of technical knowledge on system performance; * lack of guidance on retrofitting in existing developments. Based on the review of barriers to WSUD implementation and current knowledge gaps, the following were identified as core areas for further investigation: * performance evaluation of WSUD devices to enhance model development and to assess their viability in the context of environmental, economic and social drivers; establishing realistic life cycle costs to strengthen maintenance and asset management practices; * development of guidelines specific to retrofitting in view of the unique challenges posed by existing urban precincts together with guidance to ensure site specificity; establishment of a process for knowledge translation for enhancing currently available best practice guidelines; * identification of drivers and overcoming of barriers in the areas of institutional fragmentation, knowledge gaps and awareness of WSUD practices. GCCC stakeholder interviews Fourteen staff members involved in WSUD systems management in the Gold Coast City Council, representing four Directorates were interviewed using a standard questionnaire. The primary issues identified by the stakeholders were: * standardisation of WSUD terminology; * clear protocols for safeguarding devices during the construction phase; * engagement of all council stakeholders in the WSUD process from the initial phase; * limitations in the Land Development Guidelines; * ensuring public safety through design; * system siting to avoid conflicts with environmental and public use of open space; * provision of adequate access for maintenance; * integration of social and ecosystem issues to ensure long-term viability of systems in relation to both, vandalism and visual recreation; * lack of performance monitoring and inadequacy of the maintenance budget; * lack of technical training for staff involved in WSUD design approvals and maintenance; incentives for developers for acting responsibly in stormwater management. Field auditing of WSUD systems A representative cross section of WSUD systems in the Gold Coast were audited in the field. The following strengths and weaknesses in WSUD implementation were noted: * The implementation of WSUD systems in the field is not consistent. * The concerns raised by the stakeholders during the interviews in relation to WSUD implementation was validated from the observations from the field auditing, particularly in relation to the following: * safeguarding of devices during the construction phase * public safety * accessibility for maintenance * lack of performance monitoring by Council to assess system performance * inadequate maintenance of existing systems to suit site specific requirements. * A treatment train approach is not being consistently adopted. * Most of the systems audited have satisfactorily catered for public safety. Accessibility for maintenance has been satisfactorily catered for in most of the systems that were audited. * Systems are being commissioned prior to construction activities being substantially completed. * The hydraulic design of most systems appears to be satisfactory. * The design intent of the systems is not always clear. Review of Land Development Guidelines The Land Development Guidelines (TDG) was extensively reviewed and the following primary issues were noted in relation to WSUD implementation: * the LDG appears to have been prepared primarily to provide guidance to developers. It is not clear to what extent the guidelines are applicable to Council staff involved in WSUD maintenance and management; * Section 13 is very voluminous and appears to be a compilation of a series of individual documents resulting in difficulties in locating specific information, a lack of integration and duplication of information; * the LDG has been developed with a primary focus on new urban precinct development and the retrofitting of systems in existing developments has not been specifically discussed; * WSUDs are discussed in two different sections in the LDG and it is not clear which section takes precedence as there are inconsistencies between the two sections; there is inconsistent terminology being used; * there is a need for consolidation of information provided in different sections in the LDG; * there are inconsistencies in the design criteria provided; * there is a need for regular updating of the LDG to ensure that the information provided encompasses the state-of-the-art; * there is limited guidance provided for the preparation of maintenance plans and life cycle costing to assist developers in asset handover and to assist Council staff in assessment. * Based on these observations, eleven recommendations have been provided which are discussed below. Additionally, the stakeholder provided the following specific comments during the interviews in relation to the LDG: * lack of flexibility to cover the different stages of the life cycle of the systems; * no differentiation in projects undertaken by developers and Council; * inadequate information with regards to safety issues such as maximum standing water depth, fencing and safety barriers and public access; * lack of detailed design criteria in relation to Crime Prevention through Environmental Design, safety, amenity, environment, surrounding uses and impacts on surroundings; * inadequate information regarding maintenance requirements specific to the assessment and compliance phases; * recommendations for plantings are based primarily on landscape requirements rather than pollutant uptake capability. Recommendations With regards to the Land Development Guidelines, the following specific recommendations are provided: 1. the relevant sections and their extent of applicability to Council should be clearly identified; 2. integration of the different subsections within Section 13 and re-formatting the document for easy reference; 3. the maintenance guidelines provided in Section 13 should be translated to a maintenance manual for guidance of Council staff; 4. should consider extending the Guidelines to specifically encompass retrofitting of WSUD systems to existing urban precincts; 5. Section 3 needs to be revised to be made consistent with Section 13, to ensure priority for WSUD practices in urban precincts and to move away from conventional stormwater drainage design such as kerb and channelling; 6. it would also be good to specify as to which Section takes predominance in relation to stormwater drainage. It is expected that Section 13 would take predominance over the other sections in the LDG; 7. terminology needs to be made consistent to avoid confusion among developers and Council staff. Water Sensitive Urban Design is the term commonly used in Australia for stormwater quality treatment, rather than Stormwater Quality Improvement Devices. This once again underlines the need for ensuring consistency between Section 3 and Section 13; 8. it would also be good if there is a glossary of commonly used terms in relation to WSUD for use by all stakeholders and which should also be reflected in the LDG; 9. consolidation of all WSUD information into one section should be considered together with appropriate indicators in other LDG Sections regarding the availability of WSUD information. Ensuring consistency in the information provided is implied; 10. Section 13 should be updated at regular intervals to ensure the incorporation of the latest in research outcomes and incorporating criteria and guidance based on the state-of-the-art knowledge. The updating could be undertaken, say, in five year cycles. This would help to overcome the current lack of knowledge transfer; 11. the Council should consider commissioning specialised studies to extend the current knowledge base in relation to WSUD maintenance and life cycle costing. Additionally, Recommendation 10 is also applicable in this instance. The following additional recommendations are made based on the state-of-the-art literature review, stakeholder interviews and field auditing of WSUD systems: 1. Performance monitoring of existing systems to assess improvements to water quality, identify modifications and enhancements to improve performance; 2. Appropriate and monitored maintenance during different phases of development of built assets over time is needed to investigate the most appropriate time/phase of development to commission the final WSUD asset. 3. Undertake focussed investigations in the areas of WSUD maintenance and asset management in order to establish more realistic life cycle costs of systems and maintenance schedules; 4. the engagement of all relevant Council stakeholders from the initial stage of concept planning through to asset handover, and ongoing monitoring. This close engagement of internal stakeholders will assist in building a greater understanding of responsibilities and contribute to overcoming constraints imposed by fragmented responsibilities; 5. the undertaking of a public education program to inform the community of the benefits and ecosystem functions of WSUD systems; 6. technical training to impart state-of-the-art knowledge to staff involved in the approval of designs and maintenance and management of WSUD projects; 7. during the construction phase, it is important to ensure that appropriate measures to safeguard WSUD devices are implemented; 8. risks associated with potential public access to open water zones should be minimised with the application of appropriate safety measures; 9. system siting should ensure that potential conflicts are avoided with respect to public and ecosystem needs; 10. integration of social and ecosystem issues to ensure long-term viability of systems; provide incentives to developers who are proactive and responsible in the area of stormwater management.
Resumo:
This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.