961 resultados para tobacco BY-2 cells
Resumo:
Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44%) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126%), while sod1delta had lower activity (77%) than the wild type. Glutathione levels in sod1delta were increased (200-260%) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167%) and sod2delta (225%) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.
Resumo:
The respiration, membrane potential (Dy), and oxidative phosphorylation of mitochondria in situ were determined in spheroplasts obtained from Candida albicans control strain ATCC 90028 by lyticase treatment. Mitochondria in situ were able to phosphorylate externally added ADP (200 µM) in the presence of 0.05% BSA. Mitochondria in situ generated and sustained stable mitochondrial Dy respiring on 5 mM NAD-linked substrates, 5 mM succinate, or 100 µM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus 1 mM ascorbate. Rotenone (4 µM) inhibited respiration by 30% and 2 µM antimycin A or myxothiazole and 1 mM cyanide inhibited it by 85%. Cyanide-insensitive respiration was partially blocked by 2 mM benzohydroxamic acid, suggesting the presence of an alternative oxidase. Candida albicans mitochondria in situ presented a carboxyatractyloside-insensitive increase of Dy induced by 5 mM ATP and 0.5% BSA, and Dy decrease induced by 10 µM linoleic acid, both suggesting the existence of an uncoupling protein. The presence of this protein was subsequently confirmed by immunodetection and respiration experiments with isolated mitochondria. In conclusion, Candida albicans ATCC 90028 possesses an alternative electron transfer chain and alternative oxidase, both absent in animal cells. These pathways can be exceptional targets for the design of new chemotherapeutic agents. Blockage of these respiratory pathways together with inhibition of the uncoupling protein (another potential target for drug design) could lead to increased production of reactive oxygen species, dysfunction of Candida mitochondria, and possibly to oxidative cell death.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by intense polyclonal production of autoantibodies and circulating immune complexes. Some reports have associated SLE with a Th2 immune response and allergy. In the present study 21 female patients with SLE were investigated for total IgE and IgE antibodies to dust house aeroallergens by an automated enzyme-linked fluorescent assay, and were also evaluated for antinuclear IgE autoantibodies by a modified indirect immunofluorescence test using HEp-2 cells as antigen substrate. Additionally, immunocapture ELISA was used to investigate serum anti-IgE IgG autoantibodies. Serum IgE above 150 IU/ml, ranging from 152 to 609 IU/ml (median = 394 IU IgE/ml), was observed in 7 of 21 SLE patients (33%), 5 of them presenting proteinuria, urinary cellular casts and augmented production of anti-dsDNA antibodies. While only 2 of 21 SLE patients (9.5%) were positive for IgE antibodies to aeroallergens, all 10 patients with respiratory allergy (100%) from the atopic control group (3 males and 7 females), had these immunoglobulins. SLE patients and healthy controls presented similar anti-IgE IgG autoantibody titers (X = 0.37 ± 0.20 and 0.34 ± 0.18, respectively), differing from atopic controls (0.94 ± 0.26). Antinuclear IgE autoantibodies were detected in 17 of 21 (81%) sera from SLE patients, predominating the fine speckled pattern of fluorescence, that was also observed in IgG-ANA. Concluding, SLE patients can present increased IgE levels and antinuclear IgE autoantibodies without specific clinical signs of allergy or production of antiallergen IgE antibodies, excluding a possible association between SLE and allergy.
Resumo:
The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by the expansion of blasts that resemble morphologically promyelocytes and harbor a chromosomal translocation involving the retinoic acid receptor a (RARa) and the promyelocytic leukemia (PML) genes on chromosomes 17 and 15, respectively. The expression of the PML/RARa fusion gene is essential for APL genesis. In fact, transgenic mice (TM) expressing PML/RARa develop a form of leukemia that mimics the hematological findings of human APL. Leukemia is diagnosed after a long latency (approximately 12 months) during which no hematological abnormality is detected in peripheral blood (pre-leukemic phase). In humans, immunophenotypic analysis of APL blasts revealed distinct features; however, the precise immunophenotype of leukemic cells in the TM model has not been established. Our aim was to characterize the expression of myeloid antigens by leukemic cells from hCG-PML/RARa TM. In this study, TM (N = 12) developed leukemia at the mean age of 13.1 months. Morphological analysis of bone marrow revealed an increase of the percentage of immature myeloid cells in leukemic TM compared to pre-leukemic TM and wild-type controls (48.63 ± 16.68, 10.83 ± 8.11, 7.4 ± 5.46%, respectively; P < 0.05). Flow cytometry analysis of bone marrow and spleen from leukemic TM identified the asynchronous co-expression of CD34, CD117, and CD11b. This abnormal phenotype was rarely detected prior to the diagnosis of leukemia and was present at similar frequencies in hematologically normal TM and wild-type controls of different ages. The present results demonstrate that, similarly to human APL, leukemic cells from hCG-PML/RARa TM present a specific immunophenotype.
Resumo:
GM1 gangliosidosis is an autosomal recessive disorder caused by the deficiency of lysosomal acid hydrolase ß-galactosidase (ß-Gal). It is one of the most frequent lysosomal storage disorders in Brazil, with an estimated frequency of 1:17,000. The enzyme is secreted and can be captured by deficient cells and targeted to the lysosomes. There is no effective treatment for GM1 gangliosidosis. To determine the efficiency of an expression vector for correcting the genetic defect of GM1 gangliosidosis, we tested transfer of the ß-Gal gene (Glb1) to fibroblasts in culture using liposomes. ß-Gal cDNA was cloned into the expression vectors pSCTOP and pREP9. Transfection was performed using 4 µL lipofectamine 2000 and 1.5-2.0 µg DNA. Cells (2 x 10(5)/well) were harvested 24 h, 48 h, and 7 days after transfection. Enzyme specific activity was measured in cell lysate and supernatant by fluorometric assay. Twenty-four hours after transfection, treated cells showed a higher enzyme specific activity (pREP9-ß-Gal: 621.5 ± 323.0, pSCTOP-ß-Gal: 714.5 ± 349.5, pREP9-ß-Gal + pSCTOP-ß-Gal: 1859.0 ± 182.4, and pREP9-ß-Gal + pTRACER: 979.5 ± 254.9 nmol·h-1·mg-1 protein) compared to untreated cells (18.0 ± 3.1 for cell and 32.2 ± 22.2 nmol·h-1·mg-1 protein for supernatant). However, cells maintained in culture for 7 days showed values similar to those of untreated patients. In the present study, we were able to transfect primary patients' skin fibroblasts in culture using a non-viral vector which overexpresses the ß-Gal gene for 24 h. This is the first attempt to correct fibroblasts from patients with GM1 gangliosidosis by gene therapy using a non-viral vector.
Resumo:
Invasive diseases caused by Corynebacterium diphtheriae have been described increasingly. Several reports indicate the destructive feature of endocarditis attributable to nontoxigenic strains. However, few reports have dealt with the pathogenicity of invasive strains. The present investigation demonstrates a phenotypic trait that may be used to identify potentially invasive strains. The study also draws attention to clinical and microbiological aspects observed in 5 cases of endocarditis due to C. diphtheriae that occurred outside Europe. Four cases occurred in female school-age children (7-14 years) treated at different hospitals in Rio de Janeiro, Brazil. All patients developed other complications including septicemia, renal failure and/or arthritis. Surgical treatment was performed on 2 patients for valve replacement. Lethality was observed in 40% of the cases. Microorganisms isolated from 5 blood samples and identified as C. diphtheriae subsp mitis (N = 4) and C. diphtheriae subsp gravis (N = 1) displayed an aggregative adherence pattern to HEp-2 cells and identical one-dimensional SDS-PAGE protein profiles. Aggregative-adhering invasive strains of C. diphtheriae showed 5 distinct RAPD profiles. Despite the clonal diversity, all 5 C. diphtheriae invasive isolates seemed to display special bacterial adhesive properties that may favor blood-barrier disruption and systemic dissemination of bacteria. In conclusion, blood isolates from patients with endocarditis exhibited a unique adhering pattern, suggesting a pathogenic role of aggregative-adhering C. diphtheriae of different clones in endocarditis. Accordingly, the aggregative-adherence pattern may be used as an indication of some invasive potential of C. diphtheriae strains.
Resumo:
Immunosuppression has been reported to occur during active visceral leishmaniasis and some factors such as the cytokine profile may be involved in this process. In the mouse model of cutaneous leishmaniasis using Leishmania (Leishmania) major, the Th1 response is related to protection while the Th2 response is related to disease progression. However, in hamsters, which are considered to be an excellent model for the study of visceral leishmaniasis, this dichotomy is not observed. Using outbred 45- to 60-day-old (140 to 150 g) male hamsters infected intraperitoneally with 2 x 10(7) L. (L.) chagasi amastigotes, we evaluated the immune response of spleen cells and the production of cytokines. We used 3 to 7 hamsters per group evaluated. We detected a preserved response to concanavalin A measured by index of proliferation during all periods of infection studied, while a proliferative response to Leishmania antigen was detected only at 48 and 72 h post-infection. Messenger RNA from cytokines type 1 (IL-2, TNF-α, IFN-γ) and type 2 (IL-4, IL-10 and TGF-β) detected by reverse transcriptase polymerase chain reaction and produced by spleen cells showed no qualitative difference between control non-infected hamsters and infected hamsters during any period of infection evaluated. Cytokines were measured by the DNA band intensity on agarose gel using the Image Lab 1D L340 software with no differences observed. In conclusion, the present results showed an antigen-dependent immunosuppression in hamsters with active visceral leishmaniasis that was not related to the cytokine profile.
Resumo:
Tissue transglutaminase (type II, TG2) has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14) to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC) mRNA, bone morphogenetic protein-2 (BMP-2) and collagen I, significantly high alkaline phosphatase (ALP) activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.
Resumo:
Prompt and accurate detection of rejection prior to pathological changes after organ transplantation is vital for monitoring rejections. Although biopsy remains the current gold standard for rejection diagnosis, it is an invasive method and cannot be repeated daily. Thus, noninvasive monitoring methods are needed. In this study, by introducing an IL-2 neutralizing monoclonal antibody (IL-2 N-mAb) and immunosuppressants into the culture with the presence of specific stimulators and activated lymphocytes, an activated lymphocyte-specific assay (ALSA) system was established to detect the specific activated lymphocytes. This assay demonstrated that the suppression in the ALSA test was closely related to the existence of specific activated lymphocytes. The ALSA test was applied to 47 heart graft recipients and the proliferation of activated lymphocytes from all rejection recipients proven by endomyocardial biopsies was found to be inhibited by spleen cells from the corresponding donors, suggesting that this suppression could reflect the existence of activated lymphocytes against donor antigens, and thus the rejection of a heart graft. The sensitivity of the ALSA test in these 47 heart graft recipients was 100%; however, the specificity was only 37.5%. It was also demonstrated that IL-2 N-mAb was indispensible, and the proper culture time courses and concentrations of stimulators were essential for the ALSA test. This preliminary study with 47 grafts revealed that the ALSA test was a promising noninvasive tool, which could be used in vitro to assist with the diagnosis of rejection post-heart transplantation.
Resumo:
Hashimoto’s thyroiditis (HT) is considered to be mediated mainly by Th1 cells, but it is not known whether Graves’ disease (GD) is associated with Th1 or Th2 predominance. Th17 cells, a novel subset of Th cells, play a crucial role in the pathogenesis of various autoimmune disorders. In the present study, the expression of IL-17A and IFN-γ was investigated in patients with HT or GD. mRNA expression of IL-17A and IFN-γ in peripheral blood mononuclear cells (PBMC) from 43 patients with autoimmune thyroid disease (AITD) and in thyroid tissues from 40 AITD patients were measured by real-time qRT-PCR. The protein expression of IL-17A and IL-23p19 was examined by immunohistochemistry in thyroid tissues from 28 AITD patients. The mRNA levels of IL-17A and IFN-γ were higher in both PBMC and thyroid tissues of HT patients than in controls (mRNA levels are reported as the cytokine/β-actin ratio: IL-17 = 13.58- and 2.88-fold change and IFN-γ = 16.54- and 2.74-fold change, respectively, P < 0.05). Also, the mRNA levels of IL-17A and IFN-γ did not differ significantly in GD patients (P > 0.05). The high protein expression of IL-17A (IOD = 15.17 ± 4.8) and IL-23p19 (IOD = 16.84 ± 7.87) in HT was confirmed by immunohistochemistry (P < 0.05). The similar high levels of IL-17A and IFN-γ suggest a mixed response of Th17 and Th1 in HT, where both cells may play important roles in the destruction procedure by cell-mediated cytotoxicity.
Resumo:
Dye exclusion tests are used to determine the number of live and dead cells. These assays are based on the principle that intact plasma membranes in live cells exclude specific dyes, whereas dead cells do not. Although widely used, the trypan blue (TB) exclusion assay has limitations. The dye can be incorporated by live cells after a short exposure time, and personal reliability, related to the expertise of the analyst, can affect the results. We propose an alternative assay for evaluating cell viability that combines the TB exclusion test and the high sensitivity of the flow cytometry technique. Previous studies have demonstrated the ability of TB to emit fluorescence when complexed with proteins. According to our results, TB/bovine serum albumin and TB/cytoplasmic protein complexes emit fluorescence at 660 nm, which is detectable by flow cytometry using a 650-nm low-pass band filter. TB at 0.002% (w/v) was defined as the optimum concentration for distinguishing unstained living cells from fluorescent dead cells, and fluorescence emission was stable for 30 min after cell treatment. Although previous studies have shown that TB promotes green fluorescence quenching, TB at 0.002% did not interfere with green fluorescence in human live T-cells stained with anti-CD3/fluorescein isothiocyanate (FITC) monoclonal antibody. We observed a high correlation between the percentage of propidium iodide+CD3/FITC+ and TB+CD3/FITC+ cells, as well as similar double-stained cell profiles in flow cytometry dot-plot graphs. Taken together, the results indicate that a TB exclusion assay by flow cytometry can be employed as an alternative tool for quick and reliable cell viability analysis.
Resumo:
Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
Intermediate filament keratins (K) play a pivotal role in protein targeting and epithelialcytoprotection from stress as evidenced by keratin mutations predisposing to human liver and skin diseases and possibly inflammatory bowel disease (IBD). The K8-null (K8-/-) mice exhibit colonic phenotype similar to IBD and marked spontaneous colitis, epithelial hyperproliferation, decreased apoptosis, mistargeting of proteins leading to defective ion transport and diarrhea. The K8-heterozygote (K8+/-) mouse colon appears normal but displays a defective sodium (Na+) and chloride (Cl-) transport similar to, but milder than K8-/-. Characterization of K8+/- colon revealed ~50% less keratins (K7, K8, K19, K20) compared to K8 wild type (K8+/+). A similar ~50% decrease was seen in K8+/- mRNA levels as compared to K8+/+, while the mRNA levels for the other keratins were unaltered. K8+/- keratins were arranged in a normal colonic crypt expression pattern, except K7 which was expressed at the top of crypts in contrast to K8+/+. The K8+/- colon showed mild hyperplasia but no signs of inflammation and no resistance to apoptosis. Experimental colitis induced by using different concentrations of dextran sulphate sodium (DSS) showed that K8+/- mice are slightly more sensitive to induced colitis and showed a delayed recovery compared to K8+/+. Hence, the K8+/- mouse with less keratins and without inflammation, provided a novel model to study direct molecular mechanisms of keratins in intestinal homeostasis and ion transport. Different candidate ion transporters for a possible role in altered ion transport seen in the K8-/- and K8+/- mouse colon were evaluated. Besides normal levels of CFTR, PAT-1 and NHE-3, DRA mRNA levels were decreased 3-4-fold and DRA protein nearly entirely lost in K8-/- caecum, distal and proximal colon compared to K8+/+. In K8+/- mice, DRA mRNA levels were unaltered while decreased DRA protein level and patchy distribution was detected particularly in the proximal colon and as compared to K8+/+. DRA was similarly decreased when K8 was knocked-down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. The dramatic loss of DRA in colon and caecum of K8-/- mice was responsible for the chloride transport defect. The milder ion transport in K8+/- colon might be related to DRA suggesting a role for K8 in regulation of DRA expression and targeting. The current study demonstrates the importance of keratins in stress protection and cell signaling. Furthermore, we have also successfully developed a novel, simple, fast, cost effective, non-invasive in vivo imaging method for the early diagnosis of murine colitis with specificity for both genetic and experimental colitis. The said modality provides continuous measurements of reactive oxygen and nitrogen species (RONS) and minimizes the use of an increased number of experimental animals by using a luminal derivative chemiluminescent probe, L-012 which provides a cost-effective tool to study the level and longitudinal progression of colitis.