945 resultados para three-dimensional continuun-mechanical image-warping
Resumo:
Computed tomography (CT) is used increasingly to measure liver volume in patients undergoing evaluation for transplantation or resection. This study is designed to determine a formula predicting total liver volume (TLV) based on body surface area (BSA) or body weight in Western adults. TLV was measured in 292 patients from four Western centers. Liver volumes were calculated from helical computed tomographic scans obtained for conditions unrelated to the hepatobiliary system. BSA was calculated based on height and weight. Each center used a different established method of three-dimensional volume reconstruction. Using regression analysis, measurements were compared, and formulas correlating BSA or body weight to TLV were established. A linear regression formula to estimate TLV based on BSA was obtained: TLV = -794.41 + 1,267.28 x BSA (square meters; r(2) = 0.46; P <.0001). A formula based on patient weight also was derived: TLV = 191.80 + 18.51 x weight (kilograms; r(2) = 0.49; P <.0001). The newly derived TLV formula based on BSA was compared with previously reported formulas. The application of a formula obtained from healthy Japanese individuals underestimated TLV. Two formulas derived from autopsy data for Western populations were similar to the newly derived BSA formula, with a slight overestimation of TLV. In conclusion, hepatic three-dimensional volume reconstruction based on helical CT predicts TLV based on BSA or body weight. The new formulas derived from this correlation should contribute to the estimation of TLV before liver transplantation or major hepatic resection.
Resumo:
Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Estudi i implementació d’un mètode de reconstrucció 3D basat en SfM i registre de vistes 3D parcials
Resumo:
Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur
Resumo:
BACKGROUND:: Mechanical stretch has been shown to induce vascular remodeling and increase vessel density, but the pathophysiologic mechanisms and the morphologic changes induced by tensile forces to dermal vessels are poorly understood. METHODS:: A custom computer-controlled stretch device was designed and applied to the backs of C57BL/6 mice (n = 38). Dermal and vascular remodeling was studied over a 7-day period. Corrosion casting and three-dimensional scanning electron microscopy and CD31 staining were performed to analyze microvessel morphology. Hypoxia was assessed by immunohistochemistry. Western blot analysis of vascular endothelial growth factor (VEGF) and mRNA expression of VEGF receptors was performed. RESULTS:: Skin stretching was associated with increased angiogenesis as demonstrated by CD31 staining and vessel corrosion casting where intervascular distance and vessel diameter were decreased (p < 0.01). Immediately after stretching, VEGF dimers were increased. Messenger RNA expression of VEGF receptor 1, VEGF receptor 2, neuropilin 1, and neuropilin 2 was increased starting as early as 2 hours after stretching. Highly proliferating epidermal cells induced epidermal hypoxia starting at day 3 (p < 0.01). CONCLUSIONS:: Identification of significant hypoxic cells occurred after identification of neovessels, suggesting an alternative mechanism. Increased expression of angiogenic receptors and stabilization of VEGF dimers may be involved in a mechanotransductive, prehypoxic induction of neovascularization.
Resumo:
The purpose of this study was to investigate the impact of navigator timing on image quality in navigator-gated and real-time motion-corrected, free-breathing, three-dimensional (3D) coronary MR angiography (MRA) with submillimeter spatial image resolution. Both phantom and in vivo investigations were performed. 3D coronary MRA with real-time navigator technology was applied using variable navigator time delays (time delay between the navigator and imaging sequences) and varying spatial resolutions. Quantitative objective and subjective image quality parameters were assessed. For high-resolution imaging, reduced image quality was found as a function of increasing navigator time delay. Lower spatial resolution coronary MRA showed only minor sensitivity to navigator timing. These findings were consistent among volunteers and phantom experiments. In conclusion, for submillimeter navigator-gated and real-time motion-corrected 3D coronary MRA, shortening the time delay between the navigator and the imaging portion of the sequence becomes increasingly important for improved spatial resolution.
Resumo:
At 3 T, the effective wavelength of the RF field is comparable to the dimension of the human body, resulting in B1 standing wave effects and extra variations in phase. This effect is accompanied by an increase in B0 field inhomogeneity compared to 1.5 T. This combination results in nonuniform magnetization preparation by the composite MLEV weighted T2 preparation (T2 Prep) sequence used for coronary magnetic resonance angiography (MRA). A new adiabatic refocusing T2 Prep sequence is presented in which the magnetization is tipped into the transverse plane with a hard RF pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse. Numerical simulations predict an excellent suppression of artifacts originating from B1 inhomogeneity while achieving good contrast enhancement between coronary arteries and surrounding tissue. This was confirmed by an in vivo study, in which coronary MR angiograms were obtained without a T2 Prep, with an MLEV weighted T2 Prep and the proposed adiabatic T2 Prep. Improved quantitative and qualitative coronary MRA image measurement was achieved using the adiabatic T2 Prep at 3 T.
Resumo:
Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
The authors developed a free-breathing black-blood coronary magnetic resonance (MR) angiographic technique with a potential for exclusive visualization of the coronary blood pool. Results with the MR angiographic technique were evaluated in eight healthy subjects and four patients with coronary disease identified at conventional angiography. This MR angiographic technique accurately depicted luminal disease in the patients and permitted visualization of extensive continuous segments of the native coronary tree in both the healthy subjects and the patients. Black-blood coronary MR angiography provides an alternative source of contrast enhancement.
Resumo:
Combined positron emission tomography and computed tomography (PET/CT) scanners play a major role in medicine for in vivo imaging in an increasing number of diseases in oncology, cardiology, neurology, and psychiatry. With the advent of short-lived radioisotopes other than 18F and newer scanners, there is a need to optimize radioisotope activity and acquisition protocols, as well as to compare scanner performances on an objective basis. The Discovery-LS (D-LS) was among the first clinical PET/CT scanners to be developed and has been extensively characterized with older National Electrical Manufacturer Association (NEMA) NU 2-1994 standards. At the time of publication of the latest version of the standards (NU 2-2001) that have been adapted for whole-body imaging under clinical conditions, more recent models from the same manufacturer, i.e., Discovery-ST (D-ST) and Discovery-STE (D-STE), were commercially available. We report on the full characterization both in the two- and three-dimensional acquisition mode of the D-LS according to latest NEMA NU 2-2001 standards (spatial resolution, sensitivity, count rate performance, accuracy of count losses, and random coincidence correction and image quality), as well as a detailed comparison with the newer D-ST widely used and whose characteristics are already published.
Resumo:
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
Resumo:
We propose an algorithm that extracts image features that are consistent with the 3D structure of the scene. The features can be robustly tracked over multiple views and serve as vertices of planar patches that suitably represent scene surfaces, while reducing the redundancy in the description of 3D shapes. In other words, the extracted features will off er good tracking properties while providing the basis for 3D reconstruction with minimum model complexity
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
PURPOSE: To evaluate the effect of a real-time adaptive trigger delay on image quality to correct for heart rate variability in 3D whole-heart coronary MR angiography (MRA). MATERIALS AND METHODS: Twelve healthy adults underwent 3D whole-heart coronary MRA with and without the use of an adaptive trigger delay. The moment of minimal coronary artery motion was visually determined on a high temporal resolution MRI. Throughout the scan performed without adaptive trigger delay, trigger delay was kept constant, whereas during the scan performed with adaptive trigger delay, trigger delay was continuously updated after each RR-interval using physiological modeling. Signal-to-noise, contrast-to-noise, vessel length, vessel sharpness, and subjective image quality were compared in a blinded manner. RESULTS: Vessel sharpness improved significantly for the middle segment of the right coronary artery (RCA) with the use of the adaptive trigger delay (52.3 +/- 7.1% versus 48.9 +/- 7.9%, P = 0.026). Subjective image quality was significantly better in the middle segments of the RCA and left anterior descending artery (LAD) when the scan was performed with adaptive trigger delay compared to constant trigger delay. CONCLUSION: Our results demonstrate that the use of an adaptive trigger delay to correct for heart rate variability improves image quality mainly in the middle segments of the RCA and LAD.