1000 resultados para theca cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcal enterotoxins are bacterial products that display superantigen activity in vitro as well as in vivo. For instance, staphylococcal enterotoxin B (SEB) polyclonally activates T cells that bear the Vbeta8 gene segment of the TCR. SEB-activated T cells undergo a burst of proliferation that is followed by apoptosis. Using an in vivo adaptation of a fluorescent cell division monitoring technique, we show here that SEB-activated T cells divide asynchronously, and that apoptosis of superantigen-activated T cells is preferentially restricted to cells which have undergone a discrete number of cell divisions. Collectively, our data suggest that superantigen-activated T cells are programmed to undergo a fixed number of cell divisions before undergoing apoptosis. A delayed death program may provide a mechanistic compromise between effector functions and homeostasis of activated T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated protein 2 (MAP2), a protein linked to the neuronal cytoskeleton in the mature central nervous system (CNS), has recently been identified in glial precursors indicating a potential role during glial development. In the present study, we systematically analyzed the expression of MAP2 in a series of 237 human neuroepithelial tumors including paraffin-embedded specimens and tumor tissue microarrays from oligodendrogliomas, mixed gliomas, astrocytomas, glioblastomas, ependymomas, as well as dysembryoplastic neuroepithelial tumors (DNT), and central neurocytomas. In addition, MAP2-immunoreactive precursor cells were studied in the developing human brain. Three monoclonal antibodies generated against MAP2A-B or MAP2A-D isoforms were used. Variable immunoreactivity for MAP2 could be observed in all gliomas with the exception of ependymomas. Oligodendrogliomas exhibited a consistently strong and distinct pattern of expression characterized by perinuclear cytoplasmic staining without significant process labeling. Tumor cells with immunoreactive bi- or multi-polar processes were mostly encountered in astroglial neoplasms, whereas the small cell component in neurocytomas and DNT was not labeled. These features render MAP2 immunoreactivity a helpful diagnostic tool for the distinction of oligodendrogliomas and other neuroepithelial neoplasms. RT-PCR, Western blot analysis, and in situ hybridization confirmed the expression of MAP2A-C (including the novel MAP2+ 13 transcript) in both oligodendrogliomas and astrocytomas. Double fluorescent laser scanning microscopy showed that GFAP and MAP2 labeled different tumor cell populations. In embryonic human brains, MAP2-immunoreactive glial precursor cells were identified within the subventricular or intermediate zones. These precursors exhibit morphology closely resembling the immunolabeled neoplastic cells observed in glial tumors. Our findings demonstrate MAP2 expression in astrocytic and oligodendroglial neoplasms. The distinct pattern of immunoreactivity in oligodendrogliomas may be useful as a diagnostic tool. Since MAP2 expression occurs transiently in migrating immature glial cells, our findings are in line with an assumed origin of diffuse gliomas from glial precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stiffness of tumor cells varies during cancer progression. In particular, metastatic carcinoma cells analyzed by Atomic Force Microscopy (AFM) appear softer than non-invasive and normal cells. Here we examined by AFM how the stiffness of melanoma cells varies during progression from non-invasive Radial Growth Phase (RGP) to invasive Vertical Growth Phase (VGP) and to metastatic tumors. We show that transformation of melanocytes to RGP and to VGP cells is characterized by decreased cell stiffness. However, further progression to metastatic melanoma is accompanied by increased cell stiffness and the acquisition of higher plasticity by tumor cells, which is manifested by their ability to greatly augment or reduce their stiffness in response to diverse adhesion conditions. We conclude that increased plasticity, rather than decreased stiffness as suggested for other tumor types, is a marker of melanoma malignancy. These findings advise caution about the potential use of AFM for melanoma diagnosis. FROM THE CLINICAL EDITOR: This study investigates the changes to cellular stiffness in metastatic melanoma cells examined via atomic force microscopy. The results demonstrate that increased plasticity is a marker of melanoma malignancy, as opposed to decreased stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melan-A specific CD8+ T cells are thought to play an important role against the development of melanoma. Their in vivo expansion is often observed with advanced disease. In recent years, low levels of Melan-A reactive CD8+ T cells have also been found in HLA-A2 healthy donors, but these cells harbor naive characteristics and are thought to be mostly cross-reactive for the Melan-A antigen. Here, we report on a large population of CD8+ T cells reactive for the Melan-A antigen, identified in one donor with no evidence of melanoma. Interestingly, this population is oligoclonal and displays a clear memory phenotype. However, a detailed study of these cells indicated that they are unlikely to be directly specific for melanoma, so that their in vivo expansion may have been driven by an exogenous antigen. Screening of a Melan-A cross-reactive peptide library suggested that these cells may be specific for an epitope derived from a Mycobacterium protein, which would provide a further example of CD8+ T cell cross-reactivity between a pathogen antigen and a tumor antigen. Finally, we discuss potential perspectives regarding the role of such cells in heterologous immunity, by influencing the balance between protective immunity and pathology, e.g. in the case of melanoma development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-viable cells and biochemical fractions from Paracoccidioides brasiliens were obtained for experimental inoculation in mice and posterior histopatological analysis. Dead total fungus, total fungus disrupted by sonorous waves, lipids of the fungus, supernatant of the lipid purification, integral and disrupted fungus free of lipids were obtained. The six preparations arised from masses of lyophilized yeasts of a recent isolate of P. brasiliensis (strain JT-1) and from a "Pool" equitably constituted by four strains maintained in laboratory for a long time (SN, 2, 18 and 192). Different doses of the 12 preparations were intraperitonially inoculated and histopathological analysis were done 30 days later. This analysis showed that all the inoculated preparations gave origin to inflamatory foci, except the one designated "supernatant of lipid purification". The alterations were detected exclusively in the liver of the animals and occurred from the smallest dose tested (1 mg), with exception of the lipids of the fungus, where the foci appeared only from a 3 mg dose onwards. No difference in the capacity of inducing histopathological alterations was found between the preparations obtained from the recent isolate (JT-1) and from the older ones ("Pool"). On the other hand, an increase of the number of inflammatory foci in function of the inoculated dose was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Identification, localisation et activation des cellules souches hématopoiétiques dormantes in vivo Les cellules souches somatiques sont présentes dans la majorité des tissus régénératifs comme la peau, l'épithélium intestinal et le système hématopoiétique. A partir d'une seule cellule, elles ont les capacités de produire d'autres cellules souches du même type (auto-renouvellement) et d'engendrer un ensemble défini de cellules progénitrices différenciées qui vont maintenir ou réparer leur tissu hôte. Les cellules souches adultes les mieux caractérisées sont les cellules souches hématopoiétiques (HSC), localisées dans la moelle osseuse. Un des buts de mon travail de doctorat était de caractériser plus en profondeur la localisation des HSCs endogènes in vivo. Pour ce faire, la technique "label retaining assay", se basant sur la division peu fréquentes et sur la dormance des cellules souches, a été utilisée. Après un marquage des souris avec du BrdU (analogue à l'ADN) suivi d'une longue période sans BrdU, les cellules ayant incorporés le marquage ("label retaining cells" LCRs) ont pu être identifiées dans la moelle osseuse. Ces cellules LCRs étaient enrichies 300 fois en cellules de phenotype HSC et, en utilisant de la cytofluorométrie, il a pu être montré qu'environ 15% de toutes les HSCs d'une souris restent dormantes durant plusieures semaines. Ces HSCs dormantes à long terme ne sont probablement pas impliquées dans la maintenance de 'hématopoièse. Par contre, on assiste à l'activation rapide de ces HSCs dormantes lors d'une blessure, comme une ablation myéloide. Elles re-entrent alors en cycle cellulaire et sont essentielles pour une génération rapide des cellules progénitrices et matures qui vont remplacer les cellules perdues. De plus, la détection des LCRs, combinée avec l'utilisation du marqueur de HSCs c-kit, peut être utilisée pour la localisation des HSCs dormantes présentes dans la paroi endostéale de la cavité osseuse. De manière surprenante, les LCRs c-kit+ ont surtout étés trouvées isolées en cellule unique, suggérant que le micro-environement spécifique entourant et maintenant les HSCs, appelé niche, pourrait être très réduit et abriter une seule HSC par niche. Rôles complexes du gène supresseur de tumeur Pten dans le système hématopoiétique La phosphatase PTEN disparaît dans certains cancers héréditaires ou sporadiques humains, comme les gliomes, les cancers de l'utérus ou du sein. Pten inhibe la voie de signalisation de la PI3-kinase et joue un rôle clé dans l'apoptose, la croissance, la prolifération et la migration cellulaire. Notre but était d'étudier le rôle de Pten dans les HSC normale et durant la formation de leucémies. Pour ce faire, nous avons généré un modèle murin dans lequel le gène Pten peut être supprimé dans les cellules hématopoiétiques, incluant les HSCs. Ceci a été possible en croissant l'allèle conditionnelle ptenflox soit avec le transgène MxCre inductible par l'interféron α soit avec le transgène Scl-CreERt inductible par le tamoxifen. Ceci permet la conversion de l'allèle ptenflox en l'allèle nul PtenΔ dans les HSCs et les autres types cellulaires hématopoiétiques. Les souris mutantes Pten développent une splénomégalie massive causée par une expansion dramatiques de toutes les cellules myéloides. De manière interessante, alors que le nombre de HSCs dans la moelle osseuse diminue progressivement, le nombre des HSCs dans la rate augmente de manière proportionnelle. Etrangement, les analyses de cycle cellulaire ont montrés que Pten n'avait que peu ou pas d'effet sur la dormance des HSCs ou sur leur autorenouvellement. En revanche, une augmentation massive du niveau de la cytokine de mobilisation G-CSF a été détéctée dans le serum sanguin, suggérant que la suppression de Pten stimulerait la mobilisation et la migration des HSC de la moelle osseuse vers la rate. Finallement, la transplantation de moelle osseuse délétée en Pten dans des souris immuno-déficientes montre que Pten fonctionnerait comme un suppresseur de tumeur dans le système hématopoiétique car son absence entraîne la formation rapide de leucémies lymphocytaires. Summary Identification, localization and activation of dormant hematopoietic stun cells in vivo Somatic stem cells are present in most self-renewing tissues including the skin, the intestinal epithelium and the hematopoietic system. On a single cell basis they have the capacity to produce more stem cells of the same phenotype (self-renewal) and to give rise to a defined set of mature differentiated progeny, responsible for the maintenance or repair of the host tissue. The best characterized adult stem cell is the hematopoietic stem cell (HSC) located in the bone marrow. One goal of my thesis work was to further characterize the location of endogenous HSCs in vivo. To do this, a technique called "label retaining assay» was used which takes advantage of the fact that stem cells (including HSCs) divide very infrequently and can be dormant for months. After labeling mice with the DNA analogue BrdU followed by a long BrdU free "chase", BrdU "label retaining cells" (CRCs) could be identified in the bone marrow. These CRCs were 300-fold enriched for phenotypic HSCs and by using flow cytometry analysis it could be shown that about 15% of all HSCs in the mouse are dormant for many weeks. Our results suggest that these long-term dormant HSCs are unlikely to be involved in homeostatic maintenance. However they are rapidly activated and reenter the cell cycle in response to injury signals such as myeloid ablation. In addition, detection of LRCs in combination with the HSC marker c-Kit could be used to locate engrafted dormant HSCs close to the endosteal lining of the bone marrow cavities. Most surprisingly, c-Kit+LRCs were found predominantly as single cells suggesting that the specific stem cell maintaining microenvironment, called niche, has limited space and may house only single HSCs. Complex roles of the tumor suppressor gene Pten in the hematopoietic system. The phosphatase PTEN is lost in hereditary and sporadic forms of human cancers, including gliomas, endometrial and breast cancers. Pten inhibits the PI3-kina.se pathway and plays a key role in apoptosis, cell growth, proliferation and migration. Our aim was to study the role of Pten in normal HSCs and during leukemia formation. To do this, we generated a mouse model in which the Pten gene can be deleted in hematopoietic cells including HSCs. This was achieved by crossing the conditional ptenflox allele with either the interferona inducible MxCre or the tamoxifen inducible Scl-CreERT transgene. This allowed the conversion of the ptenflox allele into a pterr' null allele in HSCs and other hematopoietic cell types. As a result Pten mutant mice developed massive splenomegaly due to a dramatic expansion of all myeloid cells. Interestingly, while the number of bone marrow HSCs progressively decreased, the number of HSCs in the spleen increased to a similar extent. Unexpectedly, extensive cell cycle analysis showed that Pten had little or no effect on HSC dormancy or HSC self-renewal. Instead, dramatically increased levels of the mobilizing cytokine G-CSF were detected in the blood serum suggesting that loss-of Pten stimulates mobilization and migration of HSC from the BM to the spleen. Finally, transplantation of Pten deficient BM cells into immuno-compromised mice showed that Pten can function as a tumor suppressor in the hematopoietic system and that its absence leads to the rapid formation of T cell leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.