986 resultados para tensor imaging-detects
Resumo:
The uptake and diffusion of solvents across polymer membranes is important in controlled drug delivery, effects on drug uptake into, for example, infusion bags and containers, as well as transport across protective clothing. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been used to monitor the effects of different solvents on the diffusion of a model compound, 4-cyanophenol (CNP) across silicone membrane and on the equilibrium concentration of CNP obtained in the membrane following diffusion. ATR-FTIR spectroscopic imaging of membrane diffusion was used to gain an understanding of when the boundary conditions applied to Fick's second law, used to model the diffusion of permeants across the silicone membrane do not hold. The imaging experiments indicated that when the solvent was not taken up appreciably into the membrane, the presence of discrete solvent pools between the ATR crystal and the silicone membrane can affect the diffusion profile of the permeant. This effect is more significant if the permeant has a high solubility in the solvent. In contrast, solvents that are taken up into the membrane to a greater extent, or those where the solubility of the permeant in the vehicle is relatively low, were found to show a good fit to the diffusion model. As such these systems allow the ATR-FTIR spectroscopic approach to give mechanistic insight into how the particular solvents enhance permeation. The solubility of CNP in the solvent and the uptake of the solvent into the membrane were found to be important influences on the equilibrium concentration of the permeant obtained in the membrane following diffusion. In general, solvents which were taken up to a significant extent into the membrane and which caused the membrane to swell increased the diffusion coefficient of the permeant in the membrane though other factors such as solvent viscosity may also be important.
Resumo:
This paper studies the possibility of distinguishing between benign and malignant masses by exploiting the morphology-dependent temporal and spectral characteristics of their microwave backscatter response in ultra-wideband breast cancer detection. The spiculated border profiles of 2-D breast masses are generated by modifying the baseline elliptical rings based upon the irregularity of their peripheries. Furthermore, the single- and multilayer lesion models are used to characterize a distinct mass region followed by a sharp transition to background, and a blurred mass border exhibiting a gradual transition to background, respectively. Subsequently, the complex natural resonances (CNRs) of the backscatter microwave signature can be derived from the late-time target response and reveal diagnostically useful information. The fractional sequence CLEAN algorithm is proposed to estimate the lesions' delay intervals and identify the late-time responses. Finally, it is shown through numerical examples that the locations of dominant CNRs are dependent on the lesion morphologies, where 2-D computational breast phantoms with single and multiple lesions are investigated. The analysis is of potential use for discrimination between benign and malignant lesions, where the former usually possesses a better-defined, more compact shape as opposed to the latter.
Resumo:
Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.
Resumo:
La termometría es una técnica no invasiva que permite cuantificar los cambios en la temperatura cutánea y evaluarla de forma cuantitativa. El aumento significativo de la temperatura puede indicar la existencia de patología. Se ha demostrado que la actividad muscular induce procesos de transferencia de calor entre los músculos y las capas superficiales de tejido. En este estudio queremos cuantificar los cambios de temperatura que se producen en los músculos del pie y miembro inferior tras una carrera de 30 km, para ello hemos utilizado una cámara termográfica de alta resolución. Contamos con la colaboración voluntaria de 32 sujetos sanos a los que procedimos a tomar fotografías de la planta del pie, parte anterior de la pierna, parte posterior de la pierna, parte anterior del muslo y parte posterior del muslo en dos etapas, primero antes de la carrera y segunda toma después de la carrera de 30 km, de esta manera pudimos valorar si había o no variación de temperatura en las zonas seleccionadas. Tras el análisis de los datos obtenidos encontramos significativas variaciones térmicas en Talón, cabeza primer metatarsiano, cabeza segundo metatarsiano, cabeza tercer metatarsiano, cabeza cuarto metatarsiano, cabeza quinto metatarsiano, apófisis estiloides quinto metatarsiano, arco longitudinal interno, maléolo interno, maléolo externo, peroneo lateral largo, vasto interno, vasto externo, recto femoral, tensor de la fascia lata, inserción cuádriceps, gemelo interno, tendón de Aquiles y Biceps femoral.
Resumo:
Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.
Resumo:
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.
Resumo:
A multitude of tasks that we perform on a daily basis require precise information about the orientation of our limbs with respect to the environment and the objects located within it. Recent studies have suggested that the inertia tensor, a physical property whose values are time- and co-ordinate-indepenclent, may be an important informational invariant used by the proprioceptive system to control the movements of our limbs (Pagano et al., Ecol. Psychol. 8 (1996) 43; Pagano and Turvey, Percept. Psychophys. 52 (1992) 617; Pagano and Turvey, J. Exp. Psychol. Hum. Percept. Perform. 21 (1995) 1070). We tested this hypothesis by recording the angular errors made by subjects when pointing to virtual targets in the dark. Close examination of the pointing errors made did not show any significant effects of the inertia tensor modifications on pointing accuracy. The kinematics of the pointing movements did not indicate that any on-line adjustments were being made to compensate for the inertia tensor changes. The implications of these findings with respect to the functioning of the proprioceptive system are discussed.
Resumo:
During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.
Resumo:
Objectives: To evaluate virtual reality as a laparoscopic training device in helping surgeons to automate to the “fulcrum effect” by comparing it to time-matched training programs using randomly alternating images (ie, y-axis inverted and normal laparoscopic) and normal laparoscopic viewing conditions.
Methods: Twenty-four participants (16 females and 8 males), were randomly assigned to minimally invasive surgery virtual reality (MIST VR), randomly alternating (between y-axis inverted and normal laparoscopic images), and normal laparoscopic imaging condition. Participants were requested to perform a 2-minute laparoscopic cutting task before and after training.
Results: In the test trial participants who trained on the MIST VR performed significantly better than those in the normal laparoscopic and randomly alternating imaging conditions.
Conclusion: The results show that virtual reality training may provide faster skill acquisition with particular reference to automation of the fulcrum effect. MIST VR provides a new way of training laparoscopic psychomotor surgical skills.
Resumo:
A small minority of systemic lupus erythematosus (SLE) patients may develop a deforming arthritis, typically with a non-erosive (Jaccoud's) pattern, although erosive features indistinguishable from rheumatoid arthritis may also occur. High-resolution ultrasonography (HRUS) allows detailed 'real time' imaging of joint and tendon morphostructural changes involving the hand in patients with several rheumatic diseases. The main aim of this pictorial essay is to provide the first descriptive HRUS and power Doppler (PD) findings of joint and tendon involvement of the hand and wrist in patients with SLE arthritis. Seventeen patients with SLE and hand involvement were examined. HRUS of the wrist, 2nd and 3rd MCP joints, 3rd PIP joint and 2nd, 3rd and 4th finger flexor tendons were studied in the dominant hand for each patient. Sixteen (94%) patients had joint effusion or synovial hypertrophy in the wrist. Twelve (71%) patients had joint effusion or synovial hypertrophy in 2nd or 3rd MCPJs. Eight (47%) patients had erosion at 2nd or 3rd MCPJs. In three cases erosions were not present radiologically. Eleven (65%) patients had evidence of tenosynovitis. In SLE, HRUS with PD detects a high prevalence of inflammatory pathology in the tendons and synovium of the hand and wrist, and a high prevalence of MCP joint erosions. HRUS offers a sensitive, real-time and readily repeatable assessment of soft-tissue, inflammatory and bony changes in SLE hands.