990 resultados para temperature series
Resumo:
This work is based on a long time series of data collected in the well-preserved Bay of Calvi (Corsica island, Ligurian Sea, NW Mediterranean) between 1979 and 2011, which include physical characteristics (31 years), chlorophyll a (chl a, 15 years), and inorganic nutrients (13 years). Because samples were collected at relatively high frequencies, which ranged from daily to biweekly during the winter-spring period, it was possible to (1) evidence the key role of two interacting physical variables, i.e. water temperature and wind intensity, on nutrient replenishment and phytoplankton dynamics during the winter-spring period, (2) determine critical values of physical factors that explained interannual variability in the replenishment of surface nutrients and the winter-spring phytoplankton bloom, and (3) identify previously unrecognized characteristics of the planktonic ecosystem. Over the >30 year observation period, the main driver of nutrient replenishment and phytoplankton (chl a) development was the number of wind events (mean daily wind speed >5 m s-1) during the cold-water period (subsurface water <13.5°C). According to winter intensity, there were strong differences in both the duration and intensity of nutrient fertilization and phytoplankton blooms (chl a). The trophic character of the Bay of Calvi changed according to years, and ranged from very oligotrophic (i.e. subtropical regime, characterized by low seasonal variability) to mesotrophic (i.e. temperate regime, with a well-marked increase in nutrient concentrations and chl a during the winter-spring period) during mild and moderate winters, respectively. A third regime occurred during severe winters characterized by specific wind conditions (i.e. high frequency of northeasterly winds), when Mediterranean "high nutrient - low chlorophyll" conditions occurred as a result of enhanced crossshore exchanges and associated offshore export of the nutrient-rich water. There was no long-term trend (e.g. climatic) in either nutrient replenishment or the winter-spring phytoplankton bloom between 1979 and 2011, but both nutrients and chl a reflected interannual and decadal changes in winter intensity.
Resumo:
Benthic oxygen and nitrogen fluxes were quantified within the years 2012 to 2014 at different time series sites in the southern North Sea with the benthic lander NuSObs (Nutrient and Suspension Observatory). In situ incubations of sediments, in situ bromide tracer studies, sampling of macrofauna and pore water investigations revealed considerable seasonal and spatial variations of oxygen and nitrogen fluxes. Seasonal and spatial variations of oxygen fluxes were observed between two different time series sites, covering different sediment types and/or different benthic macrofaunal communities. On a sediment type with a high content of fine grained particles (<63 µm) oxygen fluxes of -15.5 to -25.1 mmol/m**2/d (June 2012), -2.0 to -8.2 mmol/m**2/d (March 2013), -16.8 to -21.5 mmol/m**2/d (November 2013) and -6.1 mmol/m**2/d (March 2014) were measured. At the same site a highly diverse community of small species of benthic macrofauna was observed. On a sediment type with a low content of fine grained particles (<63 µm) high oxygen fluxes (-33.2 mmol/m**2/d August 2012; -47.2 to -55.1 mmol/m**2/d November 2013; -16.6 mmol/m**2/d March 2014) were observed. On this sediment type a less diverse benthic macrofaunal community, which was dominated by the large bodied suspension feeder Ensis directus, was observed. Average annual rain rates of organic carbon and organic nitrogen to the seafloor of 7.44 mol C/m**2/y and 1.34 mol N/m**2/y were estimated. On average 79% of the organic bound carbon and 95% of the organic bound nitrogen reaching the seafloor are recycled at the sediment-water interface.
Resumo:
Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.