894 resultados para techniques: image processing
Resumo:
This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.
Resumo:
A pressing concern within the literature on anticipatory perceptual-motor behaviour is the lack of clarity on the applicability of data, observed under video-simulation task constraints, to actual performance in which actions are coupled to perception, as captured during in-situ experimental conditions. We developed an in-situ experimental paradigm which manipulated the duration of anticipatory visual information from a penalty taker’s actions to examine experienced goalkeepers’ vulnerability to deception for the penalty kick in association football. Irrespective of the penalty taker’s kick strategy, goalkeepers initiated movement responses earlier across consecutively earlier presentation points. Overall goalkeeping performance was better in non-deception trials than in deception conditions. In deception trials, the kinematic information presented up until the penalty taker initiated his/her kicking action had a negative effect on goalkeepers’ performance. It is concluded that goalkeepers are likely to benefit from not anticipating a penalty taker’s performance outcome based on information from the run-up, in preference to later information that emerges just before the initiation of the penalty taker’s kicking action.
Resumo:
In this paper, a method has been developed for estimating pitch angle, roll angle and aircraft body rates based on horizon detection and temporal tracking using a forward-looking camera, without assistance from other sensors. Using an image processing front-end, we select several lines in an image that may or may not correspond to the true horizon. The optical flow at each candidate line is calculated, which may be used to measure the body rates of the aircraft. Using an Extended Kalman Filter (EKF), the aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and the location of the horizon. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To test the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42◦ and 0.71◦ respectively when compared with a truth attitude source. The Cessna flight resulted in pitch and roll error standard deviations of 1.79◦ and 1.75◦ respectively. The benefits of selecting and tracking the horizon using a motion model and optical flow rather than naively relying on the image processing front-end is also demonstrated.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
Occlusion is a big challenge for facial expression recognition (FER) in real-world situations. Previous FER efforts to address occlusion suffer from loss of appearance features and are largely limited to a few occlusion types and single testing strategy. This paper presents a robust approach for FER in occluded images and addresses these issues. A set of Gabor based templates is extracted from images in the gallery using a Monte Carlo algorithm. These templates are converted into distance features using template matching. The resulting feature vectors are robust to occlusion. Occluded eyes and mouth regions and randomly places occlusion patches are used for testing. Two testing strategies analyze the effects of these occlusions on the overall recognition performance as well as each facial expression. Experimental results on the Cohn-Kanade database confirm the high robustness of our approach and provide useful insights about the effects of occlusion on FER. Performance is also compared with previous approaches.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
In this paper we present a real-time foreground–background segmentation algorithm that exploits the following observation (very often satisfied by a static camera positioned high in its environment). If a blob moves on a pixel p that had not changed its colour significantly for a few frames, then p was probably part of the background when its colour was static. With this information we are able to update differentially pixels believed to be background. This work is relevant to autonomous minirobots, as they often navigate in buildings where smart surveillance cameras could communicate wirelessly with them. A by-product of the proposed system is a mask of the image regions which are demonstrably background. Statistically significant tests show that the proposed method has a better precision and recall rates than the state of the art foreground/background segmentation algorithm of the OpenCV computer vision library.
Resumo:
Detection of Region of Interest (ROI) in a video leads to more efficient utilization of bandwidth. This is because any ROIs in a given frame can be encoded in higher quality than the rest of that frame, with little or no degradation of quality from the perception of the viewers. Consequently, it is not necessary to uniformly encode the whole video in high quality. One approach to determine ROIs is to use saliency detectors to locate salient regions. This paper proposes a methodology for obtaining ground truth saliency maps to measure the effectiveness of ROI detection by considering the role of user experience during the labelling process of such maps. User perceptions can be captured and incorporated into the definition of salience in a particular video, taking advantage of human visual recall within a given context. Experiments with two state-of-the-art saliency detectors validate the effectiveness of this approach to validating visual saliency in video. This paper will provide the relevant datasets associated with the experiments.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.
Resumo:
This paper presents a method for measuring the in-bucket payload volume on a dragline excavator for the purpose of estimating the material's bulk density in real-time. Knowledge of the payload's bulk density can provide feedback to mine planning and scheduling to improve blasting and therefore provide a more uniform bulk density across the excavation site. This allows a single optimal bucket size to be used for maximum overburden removal per dig and in turn reduce costs and emissions in dragline operation and maintenance. The proposed solution uses a range bearing laser to locate and scan full buckets between the lift and dump stages of the dragline cycle. The bucket is segmented from the scene using cluster analysis, and the pose of the bucket is calculated using the Iterative Closest Point (ICP) algorithm. Payload points are identified using a known model and subsequently converted into a height grid for volume estimation. Results from both scaled and full scale implementations show that this method can achieve an accuracy of above 95%.