863 resultados para targeted therapies
Resumo:
The quarter century since the foundation of the Royal College of Ophthalmologists has coincided with immense change in the subspecialty of medical retina, which has moved from being the province of a few dedicated enthusiasts to being an integral, core part of ophthalmology in every eye department. In age-related macular degeneration, there has been a move away from targeted, destructive laser therapy, dependent on fluorescein angiography to intravitreal injection therapy of anti-growth factor agents, largely guided by optical coherence tomography. As a result of these changes, ophthalmologists have witnessed a marked improvement in visual outcomes for their patients with wet age-related macular degeneration (AMD), while at the same time developing and enacting entirely novel ways of delivering care. In the field of diabetic retinopathy, this period also saw advances in laser technology and a move away from highly destructive laser photocoagulation treatment to gentler retinal laser treatments. The introduction of intravitreal therapies, both steroids and anti-growth factor agents, has further advanced the treatment of diabetic macular oedema. This era has also seen in the United Kingdom the introduction of a coordinated national diabetic retinopathy screening programme, which offers an increasing hope that the burden of blindness from diabetic eye disease can be lessened. Exciting future advances in retinal imaging, genetics, and pharmacology will allow us to further improve outcomes for our patients and for ophthalmologists specialising in medical retina, the future looks very exciting but increasingly busy.
Resumo:
Myocardial infarction results in loss of cardiac muscle and deficiency in cardiac performance. Likewise, peripheral artery disease can result in critical limb ischemia leading to reduced mobility, non-healing ulcers, gangrene and amputation. Both of these common conditions diminish quality of life and enhance risk of mortality. Successful advances in treatment have led to more people surviving incidences of myocardial infarction or living with peripheral artery disease. However, the current treatments are inadequate in repairing ischemic tissue. Over the last 5 years, a vast number of patents have been submitted concerning the use of stem cells, which correlates with the exponential growth in stem cell publications. Exploiting stem cell therapy offers a real potential in replacing ischemic tissue with functional cells. In this paper, we review recent patents concerning stem cell therapy that have the potential to provide or potentiate novel treatment for ischemic cardiovascular disease. In addition, we evaluate the promise of the inventions by describing some clinical trials that are currently taking place, as well as considering how current research on ischemic cardiovascular disease may change the patent landscape in the future.
Resumo:
Cell-based therapies have the potential to make a large contribution toward currently unmet patient need and thus effective manufacture of these products is essential. Many challenges must be overcome before this can become a reality and a better definition of the manufacturing requirements for cell-based products must be obtained. The aim of this study is to inform industry and academia of current cell-based therapy clinical development and to identify gaps in their manufacturing requirements. A total of 1342 active cell-based therapy clinical trials have been identified and characterized based on cell type, target indication and trial phase. Multiple technologies have been assessed for the manufacture of these cell types in order to facilitate product translation and future process development.
Resumo:
The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient’s age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as ‘responder status’ after treatment for n-AMD, ‘tachyphylaxis’ and ‘recalcitrant’ n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there is resolution of fluid (intraretinal fluid; IRF, subretinal fluid; SRF and retinal thickening), and/or improvement of >5 letters, subject to the ceiling effect of good starting VA. Poor response is defined as <25% reduction from the baseline in the central retinal thickness (CRT), with persistent or new IRF, SRF or minimal or change in VA (that is, change in VA of 0+4 letters). Non-response is defined as an increase in fluid (IRF, SRF and CRT), or increasing haemorrhage compared with the baseline and/or loss of >5 letters compared with the baseline or best corrected vision subsequently. Poor or non-response to anti-VEGF may be due to clinical factors including suboptimal dosing than that required by a particular patient, increased dosing intervals, treatment initiation when disease is already at an advanced or chronic stage), cellular mechanisms, lesion type, genetic variation and potential tachyphylaxis); non-clinical factors including poor access to clinics or delayed appointments may also result in poor treatment outcomes. In eyes classified as good responders, treatment should be continued with the same agent when disease activity is present or reactivation occurs following temporary dose holding. In eyes that show partial response, treatment may be continued, although re-evaluation with further imaging may be required to exclude confounding factors. Where there is persistent, unchanging accumulated fluid following three consecutive injections at monthly intervals, treatment may be withheld temporarily, but recommenced with the same or alternative anti-VEGF if the fluid subsequently increases (lesion considered active). Poor or non-response to anti-VEGF treatments requires re-evaluation of diagnosis and if necessary switch to alternative therapies including other anti-VEGF agents and/or with photodynamic therapy (PDT). Idiopathic polypoidal choroidopathy may require treatment with PDT monotherapy or combination with anti-VEGF. A committee comprised of retinal specialists with experience of managing patients with n-AMD similar to that which developed the Royal College of Ophthalmologists Guidelines to Ranibizumab was assembled. Individual aspects of the guidelines were proposed by the committee lead (WMA) based on relevant reference to published evidence base following a search of Medline and circulated to all committee members for discussion before approval or modification. Each draft was modified according to feedback from committee members until unanimous approval was obtained in the final draft. A system for categorising the range of responsiveness of n-AMD lesions to anti-VEGF therapy is proposed. The proposal is based primarily on morphological criteria but functional criteria have been included. Recommendations have been made on when to consider discontinuation of therapy either because of success or futility. These guidelines should help clinical decision-making and may prevent over and/or undertreatment with anti-VEGF therapy.
Resumo:
Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.
Resumo:
Aims : Our aim was to investigate the proportional representation of people of South Asian origin in cardiovascular outcome trials of glucose-lowering drugs or strategies in Type 2 diabetes, noting that these are among the most significant pieces of evidence used to formulate the guidelines on which clinical practice is largely based. Methods : We searched for cardiovascular outcome trials in Type 2 diabetes published before January 2015, and extracted data on the ethnicity of participants. These were compared against expected values for proportional representation of South Asian individuals, based on population data from the USA, from the UK, and globally. Results : Twelve studies met our inclusion criteria and, of these, eight presented a sufficiently detailed breakdown of participant ethnicity to permit numerical analysis. In general, people of South Asian origin were found to be under-represented in trials compared with UK and global expectations and over-represented compared with US expectations. Among the eight trials for which South Asian representation could be reliably estimated, seven under-represented this group relative to the 11.2% of the UK diabetes population estimated to be South Asian, with the representation in these trials ranging from 0.0% to 10.0%. Conclusions : Clinicians should exercise caution when generalizing the results of trials to their own practice, with regard to the ethnicity of individuals. Efforts should be made to improve reporting of ethnicity and improve diversity in trial recruitment, although we acknowledge that there are challenges that must be overcome to make this a reality.
Resumo:
Phospholipid oxidation by adventitious damage generates a wide variety of products with potentially novel biological activities that can modulate inflammatory processes associated with various diseases. To understand the biological importance of oxidised phospholipids (OxPL) and their potential role as disease biomarkers requires precise information about the abundance of these compounds in cells and tissues. There are many chemiluminescence and spectrophotometric assays available for detecting oxidised phospholipids, but they all have some limitations. Mass spectrometry coupled with liquid chromatography is a powerful and sensitive approach that can provide detailed information about the oxidative lipidome, but challenges still remain. The aim of this work is to develop improved methods for detection of OxPLs by optimisation of chromatographic separation through testing several reverse phase columns and solvent systems, and using targeted mass spectrometry approaches. Initial experiments were carried out using oxidation products generated in vitro to optimise the chromatography separation parameters and mass spectrometry parameters. We have evaluated the chromatographic separation of oxidised phosphatidylcholines (OxPCs) and oxidised phosphatidylethanolamines (OXPEs) using C8, C18 and C30 reverse phase, polystyrene – divinylbenzene based monolithic and mixed – mode hydrophilic interaction (HILIC) columns, interfaced with mass spectrometry. Our results suggest that the monolithic column was best able to separate short chain OxPCs and OxPEs from long chain oxidised and native PCs and PEs. However, variation in charge of polar head groups and extreme diversity of oxidised species make analysis of several classes of OxPLs within one analytical run impractical. We evaluated and optimised the chromatographic separation of OxPLs by serially coupling two columns: HILIC and monolith column that provided us the larger coverage of OxPL species in a single analytical run.
Resumo:
This thesis presents the study of a two-degree-of-freedom (2 DOF) nonlinear system consisting of two grounded linear oscillators coupled to two separate light weight nonlinear energy sinks of an essentially nonlinear stiffness. In this thesis, Targeted Energy Transfer (TET) and NES concept are introduced. Previous studies and research of Energy pumping and NES are presented. The characters in nonlinear energy pumping have been introduced at the start of the thesis. For the aim to design the application of a tremor reduction assessment device, the knowledge of tremor reduction has also been mentioned. Two main parties have been presented in the research: dynamical theoretic method of nonlinear energy pumping study and experiments of nonlinear vibration reduction model. In this thesis, nonlinear energy sink (NES) has been studied and used as a core attachment for the research. A new theoretic method of nonlinear vibration reduction which with two NESs has been attached to a primary system has been designed and tested with the technology of targeted energy transfer. Series connection and parallel connection structure systems have been designed to run the tests. Genetic algorithm has been used and presented in the thesis for searching the fit components. One more experiment has been tested with the final components. The results have been compared to find out most efficiency structure and components for the theoretic model. A tremor reduction experiment has been designed and presented in the thesis. The experiment is for designing an application for reducing human body tremor. By using the theoretic method earlier, the experiment has been designed and tested with a tremor reduction model. The experiment includes several tests, one single NES attached system and two NESs attached systems with different structures. The results of theoretic models and experiment models have been compared. The discussion has been made in the end. At the end of the thesis, some further work has been considered to designing the device of the tremor reduction.
Resumo:
Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.
Resumo:
Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.
Resumo:
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood–brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5′-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
Acknowledgements This study was funded by a Natural Environment Research Council grant (NERC, project code: NBAF704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefitted from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Mr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBAF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting 'Genome-powered perspectives in integrative physiology and evolutionary biology' (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.
Resumo:
7 pages, 6 figures