944 resultados para surface severe deformation
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
The dispersive characteristics of Alfvdn Surface Waves (ASW) along a moving plasma surrounded by a stationary plasma is discussed. The stability curves for the symmetric and the asymmetric modes are also discussed.
Resumo:
The low frequency surface magnetoplasmon-type polaritons in the Faraday configuration will propagate as generalized surface modes if 4ε∞/(ε∞ − 1)2 greater-or-equal, slanted μ2 and as pure surface modes if this inequality is reversed. The possibility of using the low frequency surface waves as a suitable probe for measuring the carrier concentration of a given sample is discussed.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
Quambalaria spp. include serious plant pathogens, causing leaf and shoot blight of Corymbia and Eucalyptus spp. In this study, a disease resembling Quambalaria leaf blight was observed on young Corymbia citriodora trees in a plantation in the Guangdong Province of China. Comparisons of rDNA sequence data showed that the causal agent of the disease is Q. pitereka. This study provides the first report of Quambalaria leaf blight from China, and it is also the first time that this pathogen has been found on trees outside the native range of Eucalypts.
Resumo:
The structural integrity of any member subjected to a load gets impaired due to the presence of cracks or crack-like defects. The notch severity is one of the several parameters that promotes the brittle fracture. The most severe one is an ideal crack with infinitesimal width and infinitesimal or zero root radius. Though analytical investigations can handle an ideal crack, experimental work, either to validate the analytical conclusions or to impose the bounds, needs to be carried out on models or specimens containing the cracks which are far from the ideal ones. Thus instead of an ideal crack with infinitesimal width the actual model will have a slot or a slit of finite width and instead of a crack ending in zero root radius, the model contains a slot having a finite root radius. Another factor of great significance at the root is the notch angle along which the transition from the slot to the root takes place. This paper is concerned with the photoelastic determination of the notch stress intensity factor in the case of a “crack” subjected to Mode 1 deformation.
Resumo:
EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.
Resumo:
Neglect of children is a significant social issue worldwide and is typically the most frequently reported form of maltreatment in Western nations, with its severe forms sometimes resulting in significant illness and disablement or death. Yet, paradoxically, it remains ‘neglected’ and largely in the shadow of physical and sexual abuse, often being viewed as less serious despite the real-life consequences of its insidious and compounding nature and the lasting damage it causes to intergenerational familial relationships and the life outcomes of those affected. This chapter explores the many complex forms of child neglect, its causes and impacts and the strategies to prevent it. In particular, a critical standpoint is taken in analysing the rationale and merits of mandatory reporting of neglect and their effects, systemically and for children.
Resumo:
A monolithic surface acoustic wave (SAW) resonator operating at 156 MHz, in which the frequency controlling element is a Fabry–Perot type of SAW resonator and the gain element is a monolithic SAW amplifier (SiOx/InSb/SiOx structure located inside the SAW resonator cavity) is described and experimental details presented. Based on the existing experimental data, an uhf monolithic ring resonator oscillator is proposed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
Electron energy loss spectroscopy (EELS) has been employed to monitor surface conductivity changes in YBa2Cu3O7 as a function of temperature. Concomitant use of x-ray photoelectron spectroscopy (XPS) establishes that the formation of oxygen dimers with lowering of temperature is accompanied by a simultaneous increase of surface conductivity.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
Acoustic surface waves can be generated along the plasma column in pressure equilibrium with a gas blanket in the presence of the uniform axial magnetic field. Unlike the case of volume-acoustic-wave generation in the magnetoplasma reported recently, the threshold magnetic field required for the generation of acoustic surface waves increases with increasing gas pressure.
Resumo:
This thesis developed an advanced computational model to investigate the motion and deformation properties of red blood cells in capillaries. The novel model is based on the meshfree particle methods and is capable of modelling the large deformation of red blood cells moving through blood vessels. The developed model was employed to simulate the deformation behaviour of healthy and malaria infected red blood cells as well as the motion of red blood cells in stenosed capillaries.
Resumo:
The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.