974 resultados para structure prediction
Resumo:
c. 2
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2011
Resumo:
The chemical structure of lipoprotein (a) is similar to that of LDL, from which it differs due to the presence of apolipoprotein (a) bound to apo B100 via one disulfide bridge. Lipoprotein (a) is synthesized in the liver and its plasma concentration, which can be determined by use of monoclonal antibody-based methods, ranges from < 1 mg to > 1,000 mg/dL. Lipoprotein (a) levels over 20-30 mg/dL are associated with a two-fold risk of developing coronary artery disease. Usually, black subjects have higher lipoprotein (a) levels that, differently from Caucasians and Orientals, are not related to coronary artery disease. However, the risk of black subjects must be considered. Sex and age have little influence on lipoprotein (a) levels. Lipoprotein (a) homology with plasminogen might lead to interference with the fibrinolytic cascade, accounting for an atherogenic mechanism of that lipoprotein. Nevertheless, direct deposition of lipoprotein (a) on arterial wall is also a possible mechanism, lipoprotein (a) being more prone to oxidation than LDL. Most prospective studies have confirmed lipoprotein (a) as a predisposing factor to atherosclerosis. Statin treatment does not lower lipoprotein (a) levels, differently from niacin and ezetimibe, which tend to reduce lipoprotein (a), although confirmation of ezetimibe effects is pending. The reduction in lipoprotein (a) concentrations has not been demonstrated to reduce the risk for coronary artery disease. Whenever higher lipoprotein (a) concentrations are found, and in the absence of more effective and well-tolerated drugs, a more strict and vigorous control of the other coronary artery disease risk factors should be sought.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Background: According to some international studies, patients with acute coronary syndrome (ACS) and increased left atrial volume index (LAVI) have worse long-term prognosis. However, national Brazilian studies confirming this prediction are still lacking. Objective: To evaluate LAVI as a predictor of major cardiovascular events (MCE) in patients with ACS during a 365-day follow-up. Methods: Prospective cohort of 171 patients diagnosed with ACS whose LAVI was calculated within 48 hours after hospital admission. According to LAVI, two groups were categorized: normal LAVI (≤ 32 mL/m2) and increased LAVI (> 32 mL/m2). Both groups were compared regarding clinical and echocardiographic characteristics, in- and out-of-hospital outcomes, and occurrence of ECM in up to 365 days. Results: Increased LAVI was observed in 78 patients (45%), and was associated with older age, higher body mass index, hypertension, history of myocardial infarction and previous angioplasty, and lower creatinine clearance and ejection fraction. During hospitalization, acute pulmonary edema was more frequent in patients with increased LAVI (14.1% vs. 4.3%, p = 0.024). After discharge, the occurrence of combined outcome for MCE was higher (p = 0.001) in the group with increased LAVI (26%) as compared to the normal LAVI group (7%) [RR (95% CI) = 3.46 (1.54-7.73) vs. 0.80 (0.69-0.92)]. After Cox regression, increased LAVI increased the probability of MCE (HR = 3.08, 95% CI = 1.28-7.40, p = 0.012). Conclusion: Increased LAVI is an important predictor of MCE in a one-year follow-up.
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Background: Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective: To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods: This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all-cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results: G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 - 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 - 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion: Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia.
Resumo:
Drying of porous media, pore network, pore structure, capillary forces, viscous forces, drying kinetics
Resumo:
Data Mining, Vision Restoration, Treatment outcome prediction, Self-Organising-Map