860 resultados para strength and function
Resumo:
Integrin receptors serve as mechanical links between the cell and its structural environment. Using αvβ3 integrin expressed in K562 cells as a model system, the process by which the mechanical connection between αvβ3 and vitronectin develops was analyzed by measuring the resistance of these bonds to mechanical separation. Three distinct stages of activation, as defined by increases in the αvβ3-vitronectin binding strength, were defined by mutational, biochemical, and biomechanical analyses. Activation to the low binding strength stage 1 occurs through interaction with the vitronectin ligand and leads to the phosphorylation of Y747 in the β3 subunit. Stage 2 is characterized by a 4-fold increase in binding strength and is dependent on stage1 and the phosphorylation of Y747. Stage 3 is characterized by a further 2.5-fold increase in binding strength and is dependent on stage 2 events and the availability of Y759 for interaction with cellular proteins. The Y747F mutant blocked the transition from stage 1 to stage 2, and the Y759F blocked the transition from stage 2 to stage 3. The data suggest a model for tension-induced activation of αvβ3 integrin.
Resumo:
MyoD is a member of a family of DNA-binding transcription factors that contain a helix-loop-helix (HLH) region involved in protein-protein interactions. In addition to self-association and DNA binding, MyoD associates with a number of other HLH-containing proteins, thereby modulating the strength and specificity of its DNA binding. Here, we examine the interactions of full-length MyoD with itself and with an HLH-containing peptide portion of an E2A gene product, E47-96. Analytical ultracentrifugation reveals that MyoD forms micelles that contain more than 100 monomers and are asymmetric and stable up to 36 degrees C. The critical micelle concentration increases slightly with temperature, but micelle size is unaffected. The micelles are in reversible equilibrium with monomer. Addition of E47-96 results in the stoichiometric formation of stable MyoD-E47-96 heterodimers and the depletion of micelles. Micelle formation effectively holds the concentration of free MyoD constant and equal to the critical micelle concentration. In the presence of micelles, the extent of all interactions involving free MyoD is independent of the total MyoD concentration and independent of one another. For DNA binding, the apparent relative specificity for different sites can be affected. In general, heterodimer-associated activities will depend on the self-association behavior of the partner protein.
Resumo:
The purpose of this research was to apply the use of direct ablation plasma spectroscopic techniques, including spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy (LIBS), to a variety of environmental matrices. These were applied to two different analytical problems. SIBS instrumentation was adapted in order to develop a fieldable monitor for the measurement of carbon in soil. SIBS spectra in the 200 nm to 400 nm region of several soils were collected, and the neutral carbon line (247.85 nm) was compared to total carbon concentration determined by standard dry combustion analysis. Additionally, Fe and Si were evaluated in a multivariate model in order to determine their impacts on the model's predictive power for total carbon concentrations. The results indicate that SIBS is a viable method to quantify total carbon levels in soils; obtaining a good correlation between measured and predicated carbon in soils. These results indicate that multivariate analysis can be used to construct a calibration model for SIBS soil spectra, and SIBS is a promising method for the determination of total soil carbon. SIBS was also applied to the study of biological warfare agent simulants. Elemental compositions (determined independently) of bioaerosol samples were compared to the SIBS atomic (Ca, Al, Fe and Si) and molecular (CN, N2 and OH) emission signals. Results indicate a linear relationship between the temporally integrated emission strength and the concentration of the associated element. Finally, LIBS signals of hematite were analyzed under low pressures of pure CO2 and compared with signals acquired with a mixture of CO2, N2 and Ar, which is representative of the Martian atmosphere. This research was in response to the potential use of LIBS instrumentation on the Martian surface and to the challenges associated with these measurements. Changes in Ca, Fe and Al lineshapes observed in the LIBS spectra at different gas compositions and pressures were studied. It was observed that the size of the plasma formed on the hematite changed in a non-linear way as a function of decreasing pressure in a CO2 atmosphere and a simulated Martian atmosphere.
Resumo:
Previous studies about the strength of the lithosphere in the center of Iberia fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. This heterogeneity has been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.
Resumo:
Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Introduction/Purpose: The role of impact loading activity on bone mass is well established; however, there are little data on the effects of exercise on bone geometry and indices of bone strength. The primary purpose of this study was to compare indices of bone strength at the proximal femur (PF) between elite premenarcheal gymnasts (N = 30) and age-matched controls (N = 30). Methods: Structural properties of the proximal femur were derived from the hip analyses program and included measurement of subperiosteal width, endosteal diameter, cross-sectional area, bone mineral density, cross-section moment of inertia (CSMI), and section modulus (Z). These parameters were measured for two regions of the PF: the narrow neck (NN), and the shaft (S). In addition, a strength index (S-SI) was calculated at the shaft by dividing the Z at the shaft by the femur length. A secondary purpose was to compare bone mineral content (BMC) values at the total body, lumbar spine, and three sites at the PF (neck, trochanter, and total) between the groups. All dependent values were compared adjusting for height and weight using an ANCOVA procedure and for relative lean body mass post hoc. Results: The gymnasts had significantly greater size-adjusted strength indices (CSMI, Z, and SI) at the NN and S. Gymnasts also had significantly greater size-adjusted BMC at all sites investigated. However, these differences disappeared when adjusted for relative lean body mass. Conclusion: When adjusted for body size, gymnasts had significantly greater indices of both axial strength and bending strength at the NN region of the PF and S, as well as a greater bone SI at the femoral shaft. These differences may be related to greater relative lean body mass attained in gymnastics training.
Resumo:
The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.
Resumo:
Resistance training has been shown to reliably and substantially enhance muscle function in older adults and these improvements can be accompanied by improved functional performance. Training variables should be manipulated to enhance muscle strength and minimize injury risks in this population.
Resumo:
The black tern (Anous minutus) uses a semi-precocial growth strategy. Terrestrial locomotor capacity occurs soon after hatching, but pectoral limb development is delayed and flight is not possible until about post-hatching day 50. A growth series (hatchlings to fledglings) was used to explore how limb musculoskeletal development varied with body mass. In the pelvic limb, bone lengths scaled isometrically or with negative allometry. Gastrocnemius muscle mass and the failure load and stiffness of the tibiotarsus scaled isometrically. In the pectoral limb, pectoralis and supracoracoideus muscle masses increased with strong positive allometry that was mirrored by increases in wing bone strength and stiffness. Bending strength (σult) and modulus (E) remained fairly constant throughout development to fledging for all limb bones. The moment of inertia (I) scaled with negative allometry for the tibiotarsus and with strong positive allometry in the wing bones. Differences in σult and E of the tibiotarsus between pre-fledged chicks and adults was due, primarily, to increases in bone density rather than increases in the moment of inertia of the skeletal elements, whereas σult of wing bones was a function of increases in both bone density and I. Early development of functional pelvic limbs in tree-nesting birds is relatively unusual, and presumably reflects a familial trait that does not appear to compromise breeding success in this species.
Resumo:
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.
Resumo:
Loading of the femoral neck (FN) is dominated by bending and compressive stresses. We hypothesize that adaptation of the FN to physical activity would be manifested in the cross-sectional area (CSA) and section modulus (Z) of bone, indices of axial and bending strength, respectively. We investigated the influence of physical activity on bone strength during adolescence using 7 years of longitudinal data from 109 boys and 121 girls from the Saskatchewan Paediatric Bone and Mineral Accrual Study (PBMAS). Physical activity data (PAC-Q physical activity inventory) and anthropometric measurements were taken every 6 months and DXA bone scans were measured annually (Hologic QDR2000, array mode). We applied hip structural analysis to derive strength and geometric indices of the femoral neck using DXA scans. To control for maturation, we determined a biological maturity age defined as years from age at peak height velocity (APHV). To account for the repeated measures within individual nature of longitudinal data, multilevel random effects regression analyses were used to analyze the data. When biological maturity age and body size (height and weight) were controlled, in both boys and girls, physical activity was a significant positive independent predictor of CSA and Z of the narrow region of the femoral neck (P < 0.05). There was no independent effect of physical activity on the subperiosteal width of the femoral neck. When leg length and leg lean mass were introduced into the random effects models to control for size and muscle mass of the leg (instead of height and weight), all significant effects of physical activity disappeared. Even among adolescents engaged in normal levels of physical activity, the statistically significant relationship between physical activity and indices of bone strength demonstrate that modifiable lifestyle factors like exercise play an important role in optimizing bone strength during the growing years. Physical activity differences were explained by the interdependence between activity and lean mass considerations. Physical activity is important for optimal development of bone strength. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Cyclotides are a fascinating family of plant-derived peptides characterized by their head-to-tail cyclized backbone and knotted arrangement of three disulfide bonds. This conserved structural architecture, termed the CCK (cyclic cystine knot), is responsible for their exceptional resistance to thermal, chemical and enzymatic degradation. Cyclotides have a variety of biological activities, but their insecticidal activities suggest that their primary function is in plant defence. In the present study, we determined the cyclotide content of the sweet violet Viola odorata, a member of the Violaceae family. We identified 30 cyclotides from the aerial parts and roots of this plant, 13 of which are novel sequences. The new sequences provide information about the natural diversity of cyclotides and the role of particular residues in defining structure and function. As many of the biological activities of cyclotides appear to be associated with membrane interactions, we used haemolytic activity as a marker of bioactivity for a selection of the new cyclotides. The new cyclotides were tested for their ability to resist proteolysis by a range of enzymes and, in common with other cyclotides, were completely resistant to trypsin, pepsin and thermolysin. The results show that while biological activity varies with the sequence, the proteolytic stability of the framework does not, and appears to be an inherent feature of the cyclotide framework. The structure of one of the new cyclotides, cycloviolacin O14, was determined and shown to contain the CCK motif. This study confirms that cyclotides may be regarded as a natural combinatorial template that displays a variety of peptide epitopes most likely targeted to a range of plant pests and pathogens.
Resumo:
Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.