968 resultados para stochastic process
Resumo:
IT resources are indispensable in the management of Public Sector Organizations (PSOs) around the world. We investigate the factors that could leverage the IT resources in PSOs in developing economies. While research on ways to leverage IT resources in private sector organizations of developed countries is substantial, our understanding on ways to leverage the IT resources in the public sector in developing countries is limited. The current study aspires to address this gap in the literature by seeking to determine the key factors required to create process value from public sector IT investments in developing countries. We draw on the resource-centric theories to imply the nature of factors that could leverage the IT resources in the public sector. Employing an interpretive design, we identified three factors necessary for IT process value generation in the public sector. We discuss these factors and state their implications to theory and practice.
Resumo:
The previous chapters gave an insightful introduction into the various facets of Business Process Management. We now share a rich understanding of the essential ideas behind designing and managing processes for organizational purposes. We have also learned about the various streams of research and development that have influenced contemporary BPM. As a matter of fact, BPM has become a holistic management discipline. As such, it requires that a plethora of facets needs to be addressed for its successful und sustainable application. This chapter provides a framework that consolidates and structures the essential factors that constitute BPM as a whole. Drawing from research in the field of maturity models, we suggest six core elements of BPM: strategic alignment, governance, methods, information technology, people, and culture. These six elements serve as the structure for this BPM Handbook.
Resumo:
Nowadays, process management systems (PMSs) are widely used in many business scenarios, e.g. by government agencies, by insurance companies, and by banks. Despite this widespread usage, the typical application of such systems is predominantly in the context of static scenarios, instead of pervasive and highly dynamic scenarios. Nevertheless, pervasive and highly dynamic scenarios could also benefit from the use of PMSs.
Resumo:
Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.
Resumo:
Process Modeling is a widely used concept for understanding, documenting and also redesigning the operations of organizations. The validation and usage of process models is however affected by the fact that only business analysts fully understand them in detail. This is in particular a problem because they are typically not domain experts. In this paper, we investigate in how far the concept of verbalization can be adapted from object-role modeling to process models. To this end, we define an approach which automatically transforms BPMN process models into natural language texts and combines different techniques from linguistics and graph decomposition in a flexible and accurate manner. The evaluation of the technique is based on a prototypical implementation and involves a test set of 53 BPMN process models showing that natural language texts can be generated in a reliable fashion.
Resumo:
This article studies the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method for structuring any process model that belongs to this class. This article fills this gap in the context of acyclic process models. The article defines a necessary and sufficient condition for an unstructured acyclic process model to have an equivalent well-structured process model under fully concurrent bisimulation, as well as a complete structuring method. The method has been implemented as a tool that takes process models captured in the BPMN and EPC notations as input. The article also reports on an empirical evaluation of the structuring method using a repository of process models from commercial practice.
Resumo:
Determining similarity between business process models has recently gained interest in the business process management community. So far similarity was addressed separately either at semantic or structural aspect of process models. Also, most of the contributions that measure similarity of process models assume an ideal case when process models are enriched with semantics - a description of meaning of process model elements. However, in real life this results in a heavy human effort consuming pre-processing phase which is often not feasible. In this paper we propose an automated approach for querying a business process model repository for structurally and semantically relevant models. Similar to the search on the Internet, a user formulates a BPMN-Q query and as a result receives a list of process models ordered by relevance to the query. We provide a business process model search engine implementation for evaluation of the proposed approach.
Resumo:
A BPMN model is well-structured if splits and joins are always paired into single-entry-single-exit blocks. Well-structuredness is often a desirable property as it promotes readability and makes models easier to analyze. However, many process models found in practice are not well-structured, and it is not always feasible or even desirable to restrict process modelers to produce only well-structured models. Also, not all processes can be captured as well-structured process models. An alternative to forcing modelers to produce well-structured models, is to automatically transform unstructured models into well-structured ones when needed and possible. This talk reviews existing results on automatic transformation of unstructured process models into structured ones.
Resumo:
Recently, a new approach for structuring acyclic process models has been introduced. The algorithm is based on a transformation between the Refined Process Structure Tree (RPST) of a control flow graph and the Modular Decomposition Tree (MDT) of ordering relations. In this paper, an extension of the algorithm is presented that allows to partially structure process models in the case when a process model cannot be structured completely. We distinguish four different types of unstructuredness of process models and show that only two are possible in practice. For one of these two types of unstructuredness an algorithm is proposed that returns the maximally structured representation of a process model.
Resumo:
Process models specify behavioral aspects by describing ordering constraints between tasks which must be accomplished to achieve envisioned goals. Tasks usually exchange information by means of data objects, i.e., by writing information to and reading information from data objects. A data object can be characterized by its states and allowed state transitions. In this paper, we propose a notion which checks conformance of a process model with respect to data objects that its tasks access. This new notion can be used to tell whether in every execution of a process model each time a task needs to access a data object in a particular state, it is ensured that the data object is in the expected state or can reach the expected state and, hence, the process model can achieve its goals.
Resumo:
Software engineers constantly deal with problems of designing, analyzing, and improving process specifications, e.g., source code, service compositions, or process models. Process specifications are abstractions of behavior observed or intended to be implemented in reality which result from creative engineering practice. Usually, process specifications are formalized as directed graphs in which edges capture temporal relations between decisions, synchronization points, and work activities. Every process specification is a compromise between two points: On the one hand engineers strive to operate with less modeling constructs which conceal irrelevant details, while on the other hand the details are required to achieve the desired level of customization for envisioned process scenarios. In our research, we approach the problem of varying abstraction levels of process specifications. Formally, developed abstraction mechanisms exploit the structure of a process specification and allow the generalization of low-level details into concepts of a higher abstraction level. The reverse procedure can be addressed as process specialization.
Resumo:
This paper addresses the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method to structure any process model that belongs to this class. This paper fills this gap in the context of acyclic process models. The paper defines a necessary and sufficient condition for an unstructured process model to have an equivalent structured model under fully concurrent bisimulation, as well as a complete structuring method.
Resumo:
Process models define allowed process execution scenarios. The models are usually depicted as directed graphs, with gateway nodes regulating the control flow routing logic and with edges specifying the execution order constraints between tasks. While arbitrarily structured control flow patterns in process models complicate model analysis, they also permit creativity and full expressiveness when capturing non-trivial process scenarios. This paper gives a classification of arbitrarily structured process models based on the hierarchical process model decomposition technique. We identify a structural class of models consisting of block structured patterns which, when combined, define complex execution scenarios spanning across the individual patterns. We show that complex behavior can be localized by examining structural relations of loops in hidden unstructured regions of control flow. The correctness of the behavior of process models within these regions can be validated in linear time. These observations allow us to suggest techniques for transforming hidden unstructured regions into block-structured ones.
Resumo:
In order to execute, study, or improve operating procedures, companies document them as business process models. Often, business process analysts capture every single exception handling or alternative task handling scenario within a model. Such a tendency results in large process specifications. The core process logic becomes hidden in numerous modeling constructs. To fulfill different tasks, companies develop several model variants of the same business process at different abstraction levels. Afterwards, maintenance of such model groups involves a lot of synchronization effort and is erroneous. We propose an abstraction technique that allows generalization of process models. Business process model abstraction assumes a detailed model of a process to be available and derives coarse-grained models from it. The task of abstraction is to tell significant model elements from insignificant ones and to reduce the latter. We propose to learn insignificant process elements from supplementary model information, e.g., task execution time or frequency of task occurrence. Finally, we discuss a mechanism for user control of the model abstraction level – an abstraction slider.
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.