978 resultados para spin-relaxation processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C-13 nuclear spins as qubits and an environment of H-1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 mu s. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 16-electron, coordinatively unsaturated, dicationic ruthenium complex Ru(P(OH)(2)(OMe))(dppe)(2)]OTf](2) (1a) brings about the heterolysis of the C-H bond in phenylacetylene to afford the phenylacetylide complex trans-Ru(C CPh)(P(OH)(2)(OMe))(dppe)(2)]OTf] (2). The phenylacetylide complex undergoes hydrogenation to give a ruthenium hydride complex trans-Ru(H)(P(OH)(2)(OMe))(dppe)(2)]OTf] (3) and phenylacetylene via the addition of H-2 across the Ru-C bond. The 16-electron complex also reacts with HSiCl3 quite vigorously to yield a chloride complex trans-Ru(Cl)(P(OH)(2)(OMe))(dppe)(2)]OTf] (4). On the other hand, the other coordinatively unsaturated ruthenium complex Ru(P(OH)(3))(dppe)(2)]OTf](2) (1b) reacts with a base N-benzylideneaniline to afford a phosphonate complex Ru(P(O)(OH)(2))(dppe)(2)]OTf] (5) via the abstraction of one of the protons of the P(OH)(3) ligand by the base. The phenylacetylide, chloride, and the phosphonate complexes have been structurally characterized. The phosphonate complex reacts with H-2 to afford the corresponding dihydrogen complex trans-Ru(eta(2)-H-2)(P(O)(OH)(2))(dppe)(2)]OTf] (5-H2). The intact nature of the H-H bond in this species was established using variable temperature H-1 spin-lattice relaxation time measurements and the observation of a significant J(H,D) coupling in the HD isotopomer trans-Ru(eta(2)-HD)(P(O)(OH)(2))(dppe)(2)]OTf] (5-HD). (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to examine migration of educated Dominicans in light of global processes. Current global developments have resulted in increasingly global movements of people, yet people tend to come from certain places in large numbers rather than others. At the same time, international migration is increasingly selective, which shows in the disproportional number of educated migrants. This study discovers individual and societal motivations that explain why young educated Dominicans decide to migrate and return. The theoretical framework of this thesis underlines that migration is a dynamic process rooted in other global developments. Migratory movements should be seen as a result of interacting macro- and microstructures, which are linked by a number of intermediate mechanisms, meso-structures. The way individuals perceive opportunity structures concretises the way global developments mediate to the micro-level. The case of the Dominican Republic shows that there is a diversity of local responses to the world system, as Dominicans have produced their own unique historical responses to global changes. The thesis explains that Dominican migration is importantly conditioned by socioeconomic and educational background. Migration is more accessible for the educated middle class, because of the availability of better resources. Educated migrants also seem less likely to rely on networks to organize their migrations. The role of networks in migration differs by socioeconomic background on the one hand, and by the specific connections each individual has to current and previous migrants on the other hand. The personal and cultural values of the migrant are also pivotal. The central argument of this thesis is that a veritable culture of migration has evolved in the Dominican Republic. The actual economic, political and social circumstances have led many Dominicans to believe that there are better opportunities elsewhere. The globalisation of certain expectations on the one hand, and the development of the specifically Dominican feeling of ‘externalism’ on the other, have for their part given rise to the Dominican culture of migration. The study also suggests that the current Dominican development model encourages migration. Besides global structures, local structures are found to ve pivotal in determining how global processes are materialised in a specific place. The research for this thesis was conducted by using qualitative methodology. The focus of this thesis was on thematic interviews that reveal the subject’s point of view and give a fuller understanding of migration and mobility of the educated. The data was mainly collected during a field research phase in Santo Domingo, the Dominican Republic in December 2009 and January 2010. The principal material consists of ten thematic interviews held with educated Dominican current or former migrants. Four expert interviews, relevant empirical data, theoretical literature and newspaper articles were also comprehensively used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular theory of dielectric relaxation in a dense binary dipolar liquid is presented. The theory takes into account the effects of intra- and interspecies intermolecular interactions. It is shown that the relaxation is, in general, nonexponential. In certain limits, we recover the biexponential form traditionally used to analyze the experimental data of dielectric relaxation in a binary mixture. However, the relaxation times are widely different from the prediction of the noninteracting rotational diffusion model of Debye for a binary system. Detailed numerical evaluation of the frequency-dependent dielectric function epsilon-(omega) is carried out by using the known analytic solution of the mean spherical approximation (MSA) model for the two-particle direct correlation function for a polar mixture. A microscopic expression for both wave vector (k) and frequency (omega) dependent dielectric function, epsilon-(k,omega), of a binary mixture is also presented. The theoretical predictions on epsilon-(omega) (= epsilon-(k = 0, omega)) have been compared with the available experimental results. In particular, the present theory offers a molecular explanation of the phenomenon of fusing of the two relaxation channels of the neat liquids, observed by Schallamach many years ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric properties of BaBi4Ti4O15 ceramics were investigated as a function of frequency (10(2)-10(6) Hz) at various temperatures (30 degrees C-470 degrees C), covering the phase transition temperature. Two different conduction mechanisms were obtained by fitting the complex impedance data to Cole-Cole equation. The grain and grain boundary resistivities were found to follow the Arrhenius law associated with activation energies: E-g similar to 1.12 eV below T-m and E-g similar to 0.70 eV above T-m for the grain conduction; and E-gb similar to 0.93 eV below T-m and E-gb similar to 0.71 eV above T-m for the grain boundary conduction. Relaxation times extracted using imaginary part of complex impedance Z `'(omega) and modulus M `'(omega) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature. The frequency dependence of conductivity was interpreted in terms of the jump relaxation model and was fitted to the double power law. (C) 2010 Elsevier B. V. All rights reserved.