923 resultados para somatic cell count


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quelque 30 % de la population neuronale du cortex mammalien est composée d’une population très hétérogène d’interneurones GABAergiques. Ces interneurones diffèrent quant à leur morphologie, leur expression génique, leurs propriétés électrophysiologiques et leurs cibles subcellulaires, formant une riche diversité. Après leur naissance dans les éminences ganglioniques, ces cellules migrent vers les différentes couches corticales. Les interneurones GABAergiques corticaux exprimant la parvalbumin (PV), lesquels constituent le sous-type majeur des interneurones GABAergiques, ciblent spécifiquement le soma et les dendrites proximales des neurones principaux et des neurones PV+. Ces interneurones sont nommés cellules à panier (Basket Cells –BCs) en raison de la complexité morphologique de leur axone. La maturation de la connectivité distincte des BCs PV+, caractérisée par une augmentation de la complexité de l’axone et de la densité synaptique, se déroule graduellement chez la souris juvénile. Des travaux précédents ont commencé à élucider les mécanismes contrôlant ce processus de maturation, identifiant des facteurs génétiques, l’activité neuronale ainsi que l’expérience sensorielle. Cette augmentation marquante de la complexité axonale et de la synaptogénèse durant cette phase de maturation suggère la nécessité d’une synthèse de protéines élevée. La voie de signalisation de la cible mécanistique de la rapamycine (Mechanistic Target Of Rapamycin -mTOR) a été impliquée dans le contrôle de plusieurs aspects neurodéveloppementaux en régulant la synthèse de protéines. Des mutations des régulateurs Tsc1 et Tsc2 du complexe mTOR1 causent la sclérose tubéreuse (TSC) chez l’humain. La majorité des patients TSC développent des problèmes neurologiques incluant des crises épileptiques, des retards mentaux et l’autisme. D’études récentes ont investigué le rôle de la dérégulation de la voie de signalisation de mTOR dans les neurones corticaux excitateurs. Toutefois, son rôle dans le développement des interneurones GABAergiques corticaux et la contribution spécifique de ces interneurones GABAergiques altérés dans les manifestations de la maladie demeurent largement inconnus. Ici, nous avons investigué si et comment l’ablation du gène Tsc1 perturbe le développement de la connectivité GABAergique, autant in vitro que in vivo. Pour investiguer le rôle de l’activation de mTORC1 dans le développement d’une BC unique, nous avons délété le gène Tsc1 en transfectant CRE-GFP dirigé par un promoteur spécifique aux BCs dans des cultures organotypiques provenant de souris Tsc1lox. Le knockdown in vitro de Tsc1 a causé une augmentation précoce de la densité des boutons et des embranchements terminaux formés par les BCs mutantes, augmentation renversée par le traitement à la rapamycine. Ces données suggèrent que l’hyperactivation de la voie de signalisation de mTOR affecte le rythme de la maturation des synapses des BCs. Pour investiguer le rôle de mTORC1 dans les interneurones GABAergiques in vivo, nous avons croisé les souris Tsc1lox avec les souris Nkx2.1-Cre et PV-Cre. À P18, les souris Tg(Nkx2.1-Cre);Tsc1flox/flox ont montré une hyperactivation de mTORC1 et une hypertrophie somatique des BCs de même qu’une augmentation de l’expression de PV dans la région périsomatique des neurones pyramidaux. Au contraire, à P45 nous avons découvert une réduction de la densité des punctas périsomatiques PV-gephyrin (un marqueur post-synaptique GABAergique). L’étude de la morphologie des BCs en cultures organotypiques provenant du knock-out conditionnel Nkx2.1-Cre a confirmé l’augmentation initiale du rythme de maturation, lequel s’effondre ensuite aux étapes développementales tardives. De plus, les souris Tg(Nkx2.1Cre);Tsc1flox/flox montrent des déficits dans la mémoire de travail et le comportement social et ce d’une façon dose-dépendante. En somme, ces résultats suggèrent que l’activation contrôlée de mTOR régule le déroulement de la maturation et la maintenance des synapses des BCs. Des dysfonctions de la neurotransmission GABAergique ont été impliquées dans des maladies telles que l’épilepsie et chez certains patients, elles sont associées avec des mutations du récepteur GABAA. De quelle façon ces mutations affectent le processus de maturation des BCs demeuret toutefois inconnu. Pour adresser cette question, nous avons utilisé la stratégie Cre-lox pour déléter le gène GABRA1, codant pour la sous-unité alpha-1 du récepteur GABAA dans une unique BC en culture organotypique. La perte de GABRA1 réduit l’étendue du champ d’innervation des BCs, suggérant que des variations dans les entrées inhibitrices en raison de l’absence de la sous-unité GABAAR α1 peuvent affecter le développement des BCs. La surexpression des sous-unités GABAAR α1 contenant des mutations identifiées chez des patients épileptiques ont montré des effets similaires en termes d’étendue du champ d’innervation des BCs. Pour approfondir, nous avons investigué les effets de ces mutations identifiées chez l’humain dans le développement des épines des neurones pyramidaux, lesquelles sont l’endroit privilégié pour la formation des synapses excitatrices. Somme toute, ces données montrent pour la première fois que différentes mutations de GABRA1 associées à des syndromes épileptiques peuvent affecter les épines dendritiques et la formation des boutons GABAergiques d’une façon mutation-spécifique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We identified a transcript named 11M2 on the basis of its strong male-specific expression pattern in the developing mouse gonad. 11M2 was found to be expressed by gonad primordial germ cells (PGCs) of both sexes and down-regulated in female PGCs as they enter prophase I of the first meiotic division, similar to the expression of Oct4. Mouse EST analysis revealed expression only in early-stage embryos, embryonic stem cells and pre-meiotic germ cells. 11M2 corresponds to a recently reported gene variously known as PGC7, stella or Dppa3. We have identified the human orthologue of Dppa3 and find by human EST analysis that it is expressed in human testicular germ cell tumours but not in normal human somatic tissues. The expression patterns of mouse and human DPPA3, in undifferentiated embryonic cells, embryonic germ cells and adult germ cell tumours, together suggest a role for this gene in maintaining cell pluripotentiality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icretransgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The dichotomization of non-small cell carcinoma (NSCLC) subtype into squamous (SQCC) and adenocarcinoma (ADC) has become important in recent years and is increasingly required with regard to management. The aim of this study was to determine the utility of a panel of commercially available antibodies in refining the diagnosis on small biopsies and also to determine whether cytologic material is suitable for somatic EGFR genotyping in a prospectively analyzed series of patients undergoing investigation for suspected lung cancer. METHODS: Thirty-two consecutive cases of NSCLC were first tested using a panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, 34betaE12, and a D-PAS stain for mucin, to determine their value in refining diagnosis of NSCLC. After this test phase, two further pathologists independently reviewed the cases using a refined panel that excluded 34betaE12 because of its low specificity for SQCC, and refinement of diagnosis and concordance were assessed. Ten cases of ADC, including eight derived from cytologic samples, were sent for EGFR mutation analysis. RESULTS: There was refinement of diagnosis in 65% of cases of NSCLC to either SQCC or ADC in the test phase. This included 10 of 13 cases where cell pellets had been prepared from transbronchial needle aspirates. Validation by two further pathologists with varying expertise in lung pathology confirmed increased refinement and concordance of diagnosis. All samples were adequate for analysis, and they all showed a wild-type EGFR genotype. CONCLUSION: A panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, and a D-PAS stain for mucin increases diagnostic accuracy and agreement between pathologists when faced with refining a diagnosis of NSCLC to SQCC or ADC. These small samples, even cell pellets derived from transbronchial needle aspirates, seem to be adequate for EGFR mutation analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: We analyzed patients with hairy cell leukemia (HCL) to achieve a better understanding of the differentiation stage reached by HCL cells and to define the key role of the diversification of cell surface makers, especially CD25 expression. PATIENTS AND METHODS: We analyzed 38 previously untreated patients with HCL to characterize their complete (VDJ(H)) and incomplete (DJ(H)) immunoglobulin (Ig) heavy chain (IgH) rearrangements, including somatic hypermutation pattern and gene segment use. RESULTS: A correlation between immunophenotypic profile and molecular data was seen. All 38 cases showed monoclonal amplifications: VDJ(H) in 97%, DJ(H) in 42%, and both in 39%. Segments from the D(H)3 family were used more in complete compared with incomplete rearrangements (45% vs. 12%; P <.005). Furthermore, comparison between molecular and immunophenotypic characteristics disclosed differences in the expression of CD25 antigen; CD25(-) cases, a phenotype associated with HCL variant, showed complete homology to the germline in 3 of 5 cases (60%), whereas this characteristic was never observed in CD25(+) cases (P <.005). Moreover, V(H)4-34, V(H)1-08, and J(H)3 segments appeared in 2, 1, and 2 CD25(-) cases, respectively, whereas they were absent in all CD25(+) cases. CONCLUSION: These results support that HCL is a heterogeneous entity including subgroups with different molecular characteristics, which reinforces the need for additional studies with a larger number of patients to clarify the real role of gene rearrangements in HCL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH-JH, two DH-JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH-JH and DH-JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRgammadelta(+) T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate if the ileum resection changes the functioning liver cell mass, the hepatic metabolism and the biodistribution of radiopharmaceutical in rats. METHODS: Twelve Wistar rats weighing 285g±34g were randomly divided into the ileum resection group (n = 6) and sham group rats (n = 6). After 30 days, they were anesthetized and 0.1mL of 99m-Tc-phytate(0.66MBq) was injected via femoral vein. After 30 minutes, blood samples were collected for red blood cells radioactive labeling and serum ALT, AST and gammaGT. Liver samples were used for 99m-Tc-phytatepercentage of radioactivity/gram of tissue and histopathology. Student’s t test was used with significance 0.05. RESULTS: There was a higher uptake of 99m-Tc-phytate in the liver of sham rats, compared to the ileum resection group (p<0.05). GammaGT, ALT and AST were increased in ileum resection rats compared to sham (p<0.05). The he patocytes count was significantly lower in ileum resection group than in sham (p<0.05). Liver: body mass ratio was lower in experimental animals than in sham group (p<0.05). CONCLUSION: These data support that the ileum has important role in liver function and liver mass regulation, and they have potential clinical implications regarding the pathogenesis of liver injury following lower bowel resection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A decline in the CD4 count is a common feature in HIV/AIDS, suggesting a compromise in immunity of patients. In response, highly active antiretroviral therapy (HAART) is prescribed to slow-down a diminution in the CD4 count and risk of AIDS-related malignancies. However, exercise may improve both the utility and population of innate immune cell components, and may be beneficial for patients with HIV infection. Comparing the effects of different exercises against HAART, on CD4 count, helps in understanding the role and evidence-based application of exercises to ameliorate immune deficiency.