876 resultados para solid-liquid-solid growth


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: Ameloblastoma is an odontogenic neoplasm with local invasiveness and recurrence. We have previously suggested that growth factors and matrix metalloproteinases (MMPs) influence ameloblastoma invasiveness(1). The aim was to study expression of MMPs, tissue inhibitor of metalloproteinases (TIMPs) and growth factors in ameloblastoma. Methods and results: Thirteen cases of solid/multicystic ameloblastoma were examined. As a control, calcifying cystic odontogenic tumour (CCOT), a non-invasive odontogenic neoplasm with ameloblastomatous epithelium was also studied. Immunohistochemistry detected MMPs, TIMPs and growth factors in ameloblastoma and CCOT. The labelling index (LI) of MMP-9 and TIMP-2 was significantly higher in ameloblastoma compared with CCOT. The LI of epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and epidermal growth factor receptor (EGFR) was also increased in ameloblastoma. This neoplasm showed greater expression of MMPs, TIMPs and growth factors compared with CCOT. We then analysed these molecules in ameloblastoma cells and stroma. Ameloblastoma cells exhibited increased LI of MMP-1, -2 and EGFR. We found a positive correlation between EGF and TIMP-1, and between TGF-alpha and TIMP-2. It is known that signals generated by growth factors are transduced by the ERK pathway. Ameloblastoma stroma exhibited the phosphorylated (activated) form of ERK. Conclusions: These results suggest an interplay involving growth factors MMPs and TIMPs that may contribute to ameloblastoma behaviour. Signals generated by this molecular network would be transduced by ERK 1/2 pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of chronic treatment with C. multijuga oil on Ehrlich tumor evolution. C multijuga was fractionated in a KOH impregnated silica gel column chromatography to give three distinct fractions, i.e., hexanic, chloroformic, and methanolic, mainly composed by hydrocarbon sesquiterpenes, oxygenated sesquiterpenes and acidic diterpenes, respectively. Results demonstrated that the C multijuga oil, the hexanic, and chloroformic fractions did not develop toxic effects. The oil, hexanic and chloroformic fractions (doses varying between 100 and 200 mg/kg) showed antineoplasic properties against Ehrlich ascitic tumor (EAT) and solid tumor during 10 consecutive days of treatment inhibiting ascitic tumor cell number, reverting medulla and blood cell counts to values similar to control group, and inhibiting the increase on several inflammatory mediators (total protein, PGE(2), nitric oxide, and TNF) on ascitic fluid. The treatment also inhibited the increase in paw volume on tumor-inoculated mice. In conclusion, C. multijugo as well as its fractions demonstrated antineoplasic effect even after oral administration confirming its use by traditional medicine. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, 1 wt % Pd/ZrO(2)-CeO(2) mixed oxide nanotubes with 90 mol % CeO(2) were synthesized following a very simple, high-yield procedure and their properties were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), and scanning and high-resolution transmission electron microscopy (SEM and HRTEM). In situ XANES experiments were carried out under reducing conditions to investigate the reduction behavior of these novel nanotube materials. The Pd/CeO(2)-based nanotubes exhibited the cubic phase (Fm3m space group). The nanotube walls were composed of nanoparticles with an average crystallite size of about 7 nm, and the nanotubes exhibited a large specific surface area (85 m(2).g(-1)). SEM and HRTEM studies showed that individual nanotubes were composed of a curved sheet of these nanoparticles. Elemental analysis showed that the Ce:Zr:Pd ratios appeared to be approximately constant across space, suggesting compositional homogeneity in the samples. XANES results indicated that the extent of reduction of these materials is low and that the Ce(4+) state is in the majority over the reduced Ce(3+) state. The results suggest that Pd cations-most likely Pd(2+)-form a Pd-Ce-Zr oxide solid solution and that the Pd(2+) is stabilized against reduction in this phase. However, incorporation of the Pd (1 wt %) into the crystal lattice of the nanotubes also appeared to destabilize Ce(4+) against reduction to Ce(3+) and caused a significant increase in its reducibility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn(2)(OH)(6)center dot 2H(2)O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 degrees C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents an investigation of the temperature induced modification in the microstructure and dynamics of poly[2-methoxy-5-(2`-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) cast films using Wide-Angle X-ray Scattering (WAXS), solid-state Nuclear Magnetic Resonance (NMR), and Fluorescence Spectroscopy (PL). MEH-PPV chain motions were characterized as a function of temperature by NMR. The results indicated that the solvent used to cast the films influences the activation energy of the side-chain motions. This was concluded from the comparison of the activation energy of the toluene cast film, E(a) = (54 +/- 8) kJ/mol, and chloroform cast film, E(a) = (69 +/- 5) kJ/mol, and could be attributed to the higher side-chain packing provided by chloroform, that preferentially solvates the side chain in contrast to toluene that solvates mainly the backbone. Concerning the backbone mobility, it was observed that the torsional motions in the MEH-PPV have average amplitude of similar to 10 degrees at 300 K, which was found to be independent of the solvent used to cast the films. In order to correlate the molecular dynamics processes with the changes in the microstructure of the polymer, in situ WAXS experiments as a function of temperature were performed and revealed that the interchain spacing in the MEH-PPV molecular aggregates increases as a function of temperature, particularly at temperatures where molecular relaxations occur. It was also observed that the WAXS peak associated with the bilayer spacing becomes narrower and its intensity increases whereas the peak associated with the inter-backbone planes reduces its intensity for higher temperatures. This last result Could be interpreted as a decrease in the number of aggregates and the reduction of the interchain species during the MEH-PPV relaxation processes. These WAXS results were correlated with PL spectra modifications observed upon temperature treatments. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluorene and thiophene units are commonly used in polymeric materials for electro-optical applications. Due to differences in reactivity, the final composition of polymers containing these components often differs from that used in their preparation. This contribution describes the synthesis of PPV type terpolymers built by fluorene, phenylene and thiophene units and their quantification by CPMAS NMR. The similarity of the three aromatic co-monomers makes it difficult to separate the analytical responses that would allow quantification of each copolymer unit in the chain. In this sense, we show that the combination of dipolar dephased CPMAS with radiofrequency ramp and proper spectral treatment allows a good estimation and quantification of the copolymer constitution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure and the vibrational spectrum of a potential drug for Chagas`s disease treatment, the (E)-isomer of phenylethenylbenzofuroxan 1 (5(6)(E)-[(2-phenylethenyl)]benzo[1,2-c]1,2,5-oxadiazole N-oxide), are reported. In order to provide insights into structural relationships, quantum mechanical calculations were employed starting from crystal structure. These results have given theoretical support to state interesting structural features, such as the effect of some intermolecular contacts on the molecule conformation and the electronic delocalization decreasing through atoms of the benzofuroxan moiety. Furthermore, the MOGUL comparative analysis in the Cambridge Structural Database provided additional evidences on these structural behaviors of compound 1. Intermolecular contacts interfere on the intramolecular geometry, as, for instance, on the phenyl group orientation, which is twisted by 12.32(6)A degrees from the ethenylbenzofuroxan plane. The experimental Raman spectrum of compound 1 presents unexpected frequency shift and also anomalous Raman activities. At last, the molecule skeleton deformation and the characteristic vibrational modes were correlated by matching the experimental Raman spectrum to the calculated one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystallization of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-y)(Y(2)O(3))(y)} (0.1 <= y <= 0.25) doped with different levels of ytterbium oxide has been investigated by X-ray powder diffraction, differential thermal analysis, and various solid-state NMR techniques. The homogeneous glasses undergo major phase segregation processes resulting in crystalline YBO(3), crystalline YAI(3)(BO(3))(4), and residual glassy B(2)O(3) as the major products. This process can be analyzed in a quantitative fashion by solid-state (11)B, (27)Al, and (89)Y NMR spectroscopies as well as (11)B{(27)Al} rotational echo double resonance (REDOR) experiments. The Yb dopants end up in both of the crystalline components, producing increased line widths of the corresponding (11)B, (27)Al, and (89)Y NMR resonances that depend linearly on the Yb/Y substitution ratio. A preliminary analysis of the composition dependence suggests that the Yb(3+) dopant is not perfectly equipartitioned between both crystalline phases, suggesting a moderate preference of Yb to substitute in the crystalline YBO(3) component.