992 resultados para solid phase micro extraction (SPME)
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
Cyclic pseudo-galactooligosaccharides were synthesized by cyclooligomerisation of isomeric azido-alkyne derivatives of beta-D-galactopyranose under Cu(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition reaction conditions. The principal products isolated were cyclic dimers and trimers, with lower amounts of cyclic tetramer and pentamer also evident in some cases. Molecular mechanics calculations suggest very compact but flexible structures for the cyclic trimers, with secondary OH groups exposed outside the macrocycle and available for enzymatic glycosylation. The cyclic dimers and trimers represent a new type of acceptor substrate for Trypanosoma cruzi trans-sialidase, giving rise to doubly and triply sialylated glycomacrocycles, respectively.
Resumo:
Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A rapid and simple method was optimized for determination of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), cannabidiol (CBD), and cannabinol (CBN) contents in cannabis products by gas chromatography with flame-ionization detection (GC-FID), using diazepam as internal standard. All parameters of validation of the method such as linearity, intraassay precision, and limits of detection and quantification of the analytes were satisfactory. Using the described method, cannabinoid contents of 55 cannabis product samples seized in Sao Paulo City, Brazil, in 2006 and 2007 were measured. Delta(9)-THC content in marijuana and hashish samples varied between 0.08% and 5.5%, with an average of 2.5%. The phenotypic ratio showed that the products were able to be designated as ""drug type.""
Resumo:
The alkyl chain of anatoxin-a(s) (cyclic guanidines), which can be used as an intermediate in the total synthesis of anatoxin-a(s), was synthesized in both racemic and enantiomerically pure forms. These enantiomerically pure cyclic compounds can be used as chiral inductors in some reactions. The two racemic routes disclosed herein have the advantages of high overall yield and mild reaction conditions. Both routes proceed through an intermediate 2,3-diaminoacid - an important synthetic scaffold - with good yields. Furthermore, the N,N-dimethyl-2(tosylimino)imidazolidine-4-carboxamide might be obtained from 2-(tosylimino)imidazolidine-4-carboxylic acid followed by selective reduction of the carbonyl functionality. All synthesized compounds were analyzed by mass spectrometry and (1)H NMR and (13)C NMR spectroscopy.
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
An increased degree of utilization of the potential N-glycosylation site In the fourth repeat unit of the human tau protein may be involved in the inability of tau to bind to the corresponding tubulin sequence(s) and in the subsequent development of the paired helical filaments of Alzheimer's disease. To model these processes, we synthesized the octadecapeptide spanning this region without sugar, and with the addition of an N-acetyl-glucosamine moiety. The carbohydrate-protected, glycosylated asparagine was incorporated as a building block during conventional Fmoc-solid phase peptide synthesis. While the crude non-glycosylated analog was obtained as a single peptide, two peptides with, the identical, expected masses, in approximately equal amounts, were detected after the cleavage of the peracetylated glycopeptide. Surprisingly, the two glycopeptides switched positions on the reversed-phase high performance liquid chromatogram after removal of the sugar-protecting acetyl groups. Nuclear magnetic resonance spectroscopy and peptide sequencing identified the more hydrophobic deprotected peak as the target peptide, and the more hydrophilic deprotected peak as a peptide analog in which the aspartic acid-bond just preceding the glycosylated asparagine residue was isomerized resulting in the formation of a beta-peptide. The anomalous chromatographic behavior of the acetylated beta-isomer could be explained on the basis of the generation of an extended hydrophobic surface which is not present in any of the other three glycopeptide variants. Repetition of the syntheses, with altered conditions and reagents, revealed reproducibly high levels of aspartic acid-bond isomerization of the glycopeptide as well as lack of isomerization for the non-glycosylated parent analog. If similar increased aspartic acid-bond isomerization occurs in vivo, a protein modification well known to take place for both the amyloid deposits and the neurofibrillary tangles in Alzheimer's disease, this process may explain the aggregation of glycosylated tau into the paired helical filaments in the affected brains. Copyright (C) 1999 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Development and characterization of novel potent and stable inhibitors of endopeptidase EC 3.4.24.15
Resumo:
Solid-phase synthesis was used to prepare a series of modifications to the selective and potent inhibitor of endopeptidase EC 3.4.24.15 (EP24.15), N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), which is degraded at the Ala-Tyr bond, thus severely limiting its utility in vivo. Reducing the amide bond between the Ala and Tyr decreased the potency of the inhibitor to 1/1000. However, the replacement of the second alanine residue immediately adjacent to the tyrosine with alpha-aminoisobutyric acid gave a compound (JA-2) that was equipotent with cFP, with a K-i of 23 nM. Like cFP, JA-2 inhibited the closely related endopeptidase EC 3.4.24.16 1/20 to 1/30 as potently as it did EP24.15, and did not inhibit the other thermolysin-like endopeptidases angiotensin-converting enzyme, endothelin-converting enzyme and neutral endopeptidase. The biological stability of JA-2 was investigated by incubation with a number of membrane and soluble sheep tissue extracts. In contrast with cFP, JA-2 remained intact after 48 h of incubation with all tissues examined. Further modifications to the JA-2 compound failed to improve the potency of this inhibitor. Hence JA-2 is a potent, EP24.15-preferential and biologically stable inhibitor, therefore providing a valuable tool for further assessing the biological functions of EP24.15.
Resumo:
The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.
Resumo:
Overcoming the phenomenon known as difficult synthetic sequences has been a major goal in solid-phase peptide synthesis for over 30 years. In this work the advantages of amide backbone-substitution in the solid-phase synthesis of difficult peptides are augmented by developing an activated N-alpha-acyl transfer auxiliary. Apart from disrupting troublesome intermolecular hydrogen-bonding networks, the primary function of the activated N-alpha-auxiliary was to facilitate clean and efficient acyl capture of large or beta-branched amino acids and improve acyl transfer yields to the secondary N-alpha-amine. We found o-hydroxyl-substituted nitrobenzyl (Hnb) groups were suitable N-alpha-auxiliaries for this purpose. The relative acyl transfer efficiency of the Hnb auxiliary was superior to the 2-hydroxy-4-methoxybenzyl (Hmb) auxiliary with protected amino acids of varying size. Significantly, this difference in efficiency was more pronounced between more sterically demanding amino acids. The Hnb auxiliary is readily incorporated at the N-alpha-amine during SPPS by reductive alkylation of its corresponding benzaldehyde derivative and conveniently removed by mild photolysis at 366 nm. The usefulness of the Hnb auxiliary for the improvement of coupling efficiencies in the chain-assembly of difficult peptides was demonstrated by the efficient Hnb-assisted Fmoc solid-phase synthesis of a known hindered difficult peptide sequence, STAT-91. This work suggests the Hnb auxiliary will significantly enhance our ability to synthesize difficult polypeptides and increases the applicability of amide-backbone substitution.