947 resultados para solar power capability
Resumo:
A ocorrência de radiação solar em meio florestal e a sua relação com a distribuição espacial dos elementos vegetais são investigadas neste trabalho. Técnicas experimentais de amostragem de radiação no interior de coberturas vegetais de grande porte são desenvolvidas e testadas, tendo como base dispositivos de suporte móveis constituídos por reticulados modulares suspensos na parte superior das grandes árvores, que permitem a disposição dos sensores de radiação em diferentes níveis de uma mesma vertical e a replicação das medidas em diferentes verticais no interior da cobertura. As medidas de radiação solar foram realizadas no sítio experimental da Reserva Florestal Ducke (02°56' S; 59°57' W), Manaus — Brasil, no período de 29 de outubro a 11 de dezembro de 1998. A inversão de modelo físico de radiação permitiu o estabelecimento da função de densidade de área foliar para a vegetação do local. Os valores obtidos para o índice de área foliar (IAF) nas três verticais em condições de radiação difusa foram 6,6, 6,3 e 6,2.
Resumo:
Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.
Resumo:
A atenuação de radiação solar em meio vegetal e sua relação com a distribuição espacial dos elementos vegetais são estudadas neste trabalho. Técnicas experimentais de amostragem de radiação no interior de coberturas vegetais de grande porte são utilizadas, tendo como base dispositivos de suporte móveis constituídos por reticulados modulares suspensos na parte superior das grandes árvores, que permitem a disposição dos sensores de radiação em diferentes níveis de uma mesma vertical no interior da cobertura. As medidas de radiação solar foram realizadas no sítio experimental da Reserva Florestal Jaru (10°05' S; 61°55' W), Ji-Paraná - Brasil, no período de 30 de outubro a 24 de novembro de 1999. A inversão de modelo físico de radiação permitiu o estabelecimento da função de densidade de área foliar com um valor médio de índice de área foliar IAF de 5,6 para a vegetação do local.
Resumo:
This paper presents a comparison between three switching techniques that can be used in three-phase four-wire Shunt Active Power Filters (SAPFs). The implemented switching techniques are: Periodic-Sampling (PS), Triangular Carrier Pulse-Width Modulation (TC-PWM) and Space Vector PWM (SVPWM). The comparison between them is made in terms of the compensated currents THD%, implementation complexity, necessary CPU time and SAPF efficiency. To perform this comparison are presented and analyzed several experimental results, obtained with a 20 kVA Shunt Active Power Filter prototype, specially developed for this purpose. The control system of the developed SAPF is based in the p-q Theory with a grid synchronization algorithm p-PLL.
Resumo:
Neste estudo, a distribuição vertical de área foliar em floresta é investigada em conexão com o regime de radiação, usando as medidas de radiação solar realizadas no período de julho a novembro de 2001, na Reserva Biológica do Cuieiras - Manaus ZF2, km 14 e km 34, na Amazônia Central. Técnicas experimentais de amostragem de radiação no interior de coberturas vegetais de grande porte são utilizadas, com dispositivos de suporte móveis constituídos por reticulados modulares, que permitem a disposição dos sensores de radiação em diferentes níveis de uma mesma vertical no interior da cobertura. Inversão de modelos radiativos em coberturas vegetais densas permite as análises sobre a distribuição vertical de área foliar. A variabilidade espacial de área foliar (IAF, função a(z)) é estabelecida para os dois sítios experimentais a partir de medidas de radiação solar, individualizadas em três verticais em cada um desses locais. O índice de área foliar total médio (IAF) da vegetação local para o sítio experimental do km 14 alcançou o valor de 6,4 e para o sítio experimental do km 34 o valor de 6,1. Uma análise comparativa é desenvolvida sobre distribuições verticais de área foliar obtidas em sítios experimentais da Amazônia, usando o mesmo sistema de medidas de radiação solar.
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.
Resumo:
Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.
Resumo:
Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.
Resumo:
This paper presents a single-phase Series Active Power Filter (Series APF) for mitigation of the load voltage harmonic content, while maintaining the voltage on the DC side regulated without the support of a voltage source. The proposed series active power filter control algorithm eliminates the additional voltage source to regulate the DC voltage, and with the adopted topology it is not used a coupling transformer to interface the series active power filter with the electrical power grid. The paper describes the control strategy which encapsulates the grid synchronization scheme, the compensation voltage calculation, the damping algorithm and the dead-time compensation. The topology and control strategy of the series active power filter have been evaluated in simulation software and simulations results are presented. Experimental results, obtained with a developed laboratorial prototype, validate the theoretical assumptions, and are within the harmonic spectrum limits imposed by the international recommendations of the IEEE-519 Standard.
Resumo:
Purpose: To evaluate how soft lens power affects rigid gas-permeable (RGP) lens power and visual acuity (VA) in piggyback fittings for keratoconus. Methods: Sixteen keratoconus subjects (30 eyes) were included in the study. Piggyback contact lens fittings combining Senofilcon-A soft lenses of −6.00, −3.00, +3.00 and +6.00 D with Rose K2 RGP contact lenses were performed. Corneal topography was taken on the naked eye and over each soft contact lens before fitting RGP lenses. Mean central keratometry, over-refraction, RGP back optic zone radius (BOZR) and estimated final power as well as VA were recorded and analyzed. Results: In comparison to the naked eye, the mean central keratometry flattened with both negative lens powers (p < 0.05 in all cases), did not change with the +3.00 soft lens power (p = 1.0); and steepened with the +6.00 soft lens power (p = 0.02). Rigid gas-permeable over-refraction did not change significantly between different soft lens powers (all p > 0.05). RGP’s BOZR decreased significantly with both positive in comparison with both negative soft lens powers (all p < 0.001), but no significant differences were found among negative- or positive-powers separately (both p > 0.05). Estimated RGP’s final power increased significantly with positive in comparison with negative lens powers (all p < 0.001), but no significant differences were found among negative or positive lens powers separately (both p > 0.05). Visual acuity did not change significantly between the different soft lens powers assessed (all p > 0.05). Conclusion: The use of negative-powered soft lenses in piggyback fitting reduces RGP lens power without impacting VA in keratoconus subjects.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Many funding agencies have Open Access mandates in place, but how often are scientific publications as outputs linked to funding details? The benefits of linking funding information to publications as part of the deposit workflow can assist in adhering to Open Access mandates. This paper examines how OpenAIRE – Open Access Infrastructure for Research in Europe – can ease monitoring Open Access and reporting processes for funders, and presents some results and opportunities. It also outlines how it relies on cleaned and curated repository content, a vital cog in the ever turning wheel of the global scholarly landscape, and the benefits it brings.
Resumo:
PURPOSE: The aim of this work was to study the central and peripheral thickness of several contact lenses (CL) with different powers and analyze how thickness variation affects CL oxygen transmissibility. METHODS: Four daily disposable and five monthly or biweekly CL were studied. The powers of each CL were: the maximum negative power of each brand; -6.00 D; -3.00 D; zero power (-0.25 D or -0.50 D), +3.00 D and +6.00 D. Central and peripheral thicknesses were measured with an electronic thickness gauge. Each lens was measured five times (central and 3mm paracentral) and the mean value was considered. Using the values of oxygen permeability given by the manufacturers and the measured thicknesses, the variation of oxygen transmissibility with lens power was determined. RESULTS: For monthly or biweekly lenses, central thickness changed between 0.061 ± 0.002 mm and 0.243 ± 0.002 mm, and peripheral thickness varied between 0.084 ± 0.002 mm and 0.231 ± 0.015 mm. Daily disposable lenses showed central values ranging between 0.056 ± 0.0016 mm and 0.205 ± 0.002 mm and peripheral values between 0.108 ± 0.05 and 0.232 ± 0.011 mm. Oxygen transmissibility (in units) of monthly or biweekly CL ranged between 39.4 ± 0.3 and 246.0 ± 14.4 and for daily disposable lenses the values range between 9.5 ± 0.5 and 178.1 ± 5.1. CONCLUSIONS: The central and peripheral thicknesses change significantly when considering the CL power and this has a significant impact on the oxygen transmissibility. Eyecare practitioners must have this fact in account when high power plus or minus lenses are fitted or when continuous wear is considered.