991 resultados para soil organic matter, SOM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic carbon is a major component of soil organic matter and its stock is influenced by the management system adopted. This study aimed to examine the effects of cropping systems and nutrient sources (mineral and organic) on the concentrations and storage of soil organic carbon in no-tillage system. The experiment was carried out in Mercedes, Parana, Brazil, in an Nitossolo Vermelho (Alfisol) from October 2007 to September 2009. The treatments consisted of four crop succession systems: (1) soybean/wheat/corn/wheat; (2) soybean/black oat/corn/black oat, (3) soybean/radish/corn/radish and (4) soybean/common vetch/corn/common vetch and by two sources of nutrients (mineral and organic), arranged in a to split plot randomized block design with four replications. Soil samples were collected in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20 to 0.40 m deep in the first and the second years of cultivation. Different cropping systems does not affect the content and the stock of soil organic carbon in the first two years of adoption of the systems. The organic fertilization with manure increased soil organic carbon stock, with an annual contribution of C, layer 0.0 to 0.20 m, 1.15 Mg ha(-1) yr(-1). Cropping systems fertilized with mineral fertilizers provide the greatest losses of soil organic carbon, resulting in negative balance of C in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied alterations of physical properties of a distroferric red nitosol due to millet (Pennisetum americanum) covering, with or without liming, in a no-tillage system during the agricultural years of 1999/2000 and 2000/2001, using soybean and corn as culture succession. 6m×10m plots, with and without millet as vegetal covering, received only one initial superficial application of limestone, 3.1 t ha-1 in the first half of each plot in order to obtain 70% base saturation (V), after the desiccation of the millet. Some physical properties as soil density, aggregate stability, > 2 mm aggregate proportion, macro and micro porosity were analyzed whereas the chemical analysis determined Ca and Mg macro nutrients, organic matter, soil pH and H+Al. Millet vegetal residues and surface liming did not alter soil density nor the average weight diameter (AWD), > 2 mm aggregate, soil macro porosity and organic matter content, twenty-four months after the no-tillage system implantation for studied experimental conditions. Soil micro porosity was significantly affected in layers deeper than 0.20 m, in treatment with millet and limestone. Calcium, magnesium and H + Al contents and the soil pH values suffered significant alterations in superficial layer, between 0-0.05 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pressure caused by agricultural machinery traffic many result in soil compactation in no-tillage system. The aim of this work was to evaluate no-tillage system onset,time on some physical properties, index S and organic matter (OM) of an oxysol located in Jaboticabal, Sao Paulo State, Brazil. The experiment had completely randomized split-splot design. The treatments consisted of four no-tillage systems: no-tillage for 2 years, no-tillage for 4 years, no-tillage for 6 years and one natural wooded area. The evaluated layers were: Q-0.10m, 0.10-0.20m and 0.20-030m. The following were determined: soil porosity, soil aggregates, bulk density, index S and organic matter. The results were submitted to variance analysis and when there was a difference between averages, Tukey's test was used to compare them. The natural wooded area showed higher organic matter, macroporosity, hydraulic conductivity and Index S. There was no difference between the studied parameters, showing that the no-tillage system for six years was not enough to change the soil physical property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work is to evaluate the stability by dry and humid of theaggregate in different systems or the use and management in Argissolos: agricultural, pasture and torest utilization. This work was realized in agricultural property, in Anhumas city, SR Several analyses including percentage of the aggregate (by way of dry and humid); the weighted mean diameter of the aggregate calculation and statistic analysis. Conclusion: the organic matter content of the A horizon of the soil under forest is 64 % more than the soil under pasture and 79 % more than the soil under annual crop; the WMDA of the aggregate obtained by dry and humid ways of the horizon A and its mean value for the soil decrease in the following sequence: PVAd - forest > PVe -pasture > PVd - annual culture, respectively, with the following values: 1.33560 and 1.445496 (D), 2.81114 and 2.351380 (H); 0.66748 and 1.011830 (D); 2.79642 and 1.624250 (H); 0.32468 and 0.993775 (S), 1.25808 and 0.983135 mm (H); the two methods are equally sensitive to reveal the effect of the soil use and management; the organic matter provides additional stability to the aggregates submitted to humid sieving and clay to the dry sieving: the WMDA obtained by dry and humid ways are statistically different for the soil profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of several soil attributes (bulk density, penetration resistance, water content, organic matter content and pH) as well as soybean yield have been assessed during the 2007/08 growing season, in Selviria (MS) in a Hapludox (Typic Acrustox), under no tillage. The objectives were to assess the spatial variability of soil and plant parameters at the small plot scale and to select the best soil attribute explaining most the variability of agricultural productivity. Soil and plant were sampled on a grid with 121 points within a plot of 25,600 m 2 in area and slope of 0.025 mm -1 slope. Medium and low coefficients of variation were obtained for most of the studied soil attributes as expected, due to the homogenizing effect of the no-till system on the soil physical environment. From the standpoint of linear regression and spatial pattern of variability, productivity of soybeans could be explained according to the hydrogen potential (pH). Results are discussed taken into account that the soybean crop in no-tillage is widely used in crop-livestock integration on the national scene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to assess the moisture and density of the soil, the amount of water stored in the profile, and the average soil's porosity with Eucalyptus grandis reforestation, compared to bare soil. The study areas are located in the Paulista region, in São Paulo, Brazil. The samples were collected in layers of 0, 20, 40, 60, 100 and 300 cm, in the months of April, June, August and October 2008. The results show that the density is lower and the porosity is higher in Eucalyptus forest soil compared to bare soil, due to the higher content of organic matter in forest leaf litter. Furthermore, the forest soil has a lower amount of water stored in profile than the bare soil without vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.