981 resultados para small animal imaging
Resumo:
Ovaries (n = 140) from 70 mixed-age multiparous, lactating Brahman cross (3/4-7/8 Bos indicus) cows were used to examine the hypothesis that counts of follicles visible on the surface of the ovaries of Bos indicus cows and their classification into diameter size classes, are closely correlated with numbers of follicles in those size classes found by complete dissection of the ovary. immediately after ovariectomy, mean diameters (long and short axes averaged) of all follicles greater than or equal to 2 mm visible on the surface of each ovary were measured. All follicles greater than or equal to 2 mm were dissected from the ovaries, excess stroma removed and follicle diameters measured under a stereomicroscope using an ocular graticule. For each ovary, follicles were classified in either small (8 mm) categories based on either diameters of surface or dissected follicles. Data for numbers of surface and dissected follicles (mean +/- SE) in small, medium, large categories and total follicle numbers, respectively, were 24.4 +/- 1.6 vs. 28.0 +/- 1.9, 1.6 +/- + 0.2 vs. 11.6 +/- 1.0, 0.5 +/- 0.1 vs. 0.7 +/- 0.1 and 26.4 +/- 1.6 vs. 40.4 +/- 2.5. Correlation coefficients (r) for counts of surface and dissected follicles in small, medium, large and total follicle numbers were 0.76, 0.40, 0.69 and 0.79, respectively. Medium size follicles presented only a small translucent area on the surface of the ovary, leading to an underestimate of numbers when categorised by surface evaluation. Counts of follicles visible on the surface of the ovaries of Bos indicus cows and their classification into size classes based on estimated diameter, are closely correlated with numbers of follicles in those size classes found at dissection of the ovary for small (8 mm) and total follicles but not for medium sized (4-8 mm) follicles. (C) 1997 Elsevier Science B.V.
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.
Resumo:
Purpose: To evaluate the changes over time in the pattern and extent of parenchymal abnormalities in asbestos-exposed workers after cessation of exposure and to compare 3 proposed semiquantitative methods with a careful side-by-side comparison of the initial and the follow-Lip computed tomography (CT) images. Materials and Methods: The study included 52 male asbestos workers (mean age SD, 62.2y +/- 8.2) who had baseline high-resolution CT after cessation of exposure and follow-up CT 3 to 5 years later. Two independent thoracic radiologists quantified the findings according to the scoring systems proposed by Huuskonen, Gamsu, and Sette and then did a side-by-side comparison of the 2 sets of scans without awareness of the dates of the CT scans. Results: There was no difference in the prevalence of the 2 most common parenchymal abnormalities (centrilobular small dotlike or branching opacities and interstitial lines) between the initial and follow-up CT scans. Honeycombing (20%) and traction bronchiectasis and bronchiolectasis (50%) were seen more commonly on the follow-up CT than on the initial examination (10% and 33%, respectively) (P = 0.01). Increased extent of parenchymal abnormalities was evident on side-by-side comparison in 42 (81%) patients but resulted in an increase in score in at least 1 semiquantitative system in only 16 (31%) patients (all P > 0.01, signed test). Conclusions: The majority of patients with previous asbestos exposure show evidence of progression of disease on CT at 3 to 5 years follow-up but this progression is usually not detected by the 3 proposed semiquantitative scoring schemes.
Resumo:
Objectives: The purpose of this study was to measure the intraobserver and interobserver reliability of magnetic resonance detection of cervical spondylotic myelopathy with and without operational guidelines. Methods: Seven radiologists examined images from 10 patients with cord signal abnormalities and clinical signs of myelopathy. Radiologist examined films twice, with and without operational guidelines designed to define stenotic changes, while blinded to the clinical findings of the patients. Analyses included a Fleiss kappa assessment of intraobserver and interobserver reliability. Results: Results demonstrated high percentage of agreement and strong intraobserver reliability and variable Fleiss kappa, values for interobserver assessment. Operational guidelines did not improve the intraobserver or interobserver agreement. Conclusion: Although the percentage of agreement was high in some cases, the kappa agreement was low-most likely a result of the base rate problem of a kappa analysis. Sample bias toward severe degenerative changes resulted in highly prevalent selections and kappa adjusted values. Nonetheless, the results do suggest that substantial intraobserver kappa agreement and a wide range of interobserver kappa agreement exists among trained radiologists during detection of stenotic changes associated with cervical spondylotic myelopathy.
Resumo:
Purpose: Erlotinib, an oral tyrosine kinase inhibitor, is active against head-and-neck squamous cell carcinoma (HNSCC) and possibly has a synergistic interaction with chemotherapy and radiotherapy. We investigated the safety and efficacy of erlotinib added to cisplatin and radiotherapy in locally advanced HNSCC. Methods and Materials: In this Phase I/II trial 100 mg/m(2) of cisplatin was administered on Days 8, 29, and 50, and radiotherapy at 70 Gy was started on Day 8. During Phase I, the erlotinib dose was escalated (50 mg, 100 mg, and 150 mg) in consecutive cohorts of 3 patients, starting on Day 1 and continuing during radiotherapy. Dose-limiting toxicity was defined as any Grade 4 event requiring radiotherapy interruptions. Phase 11 was initiated 8 weeks after the last Phase I enrollment. Results: The study accrued 9 patients in Phase I and 28 in Phase II; all were evaluable for efficacy and safety. No dose-limiting toxicity occurred in Phase I, and the recommended Phase 11 dose was 150 mg. The most frequent nonhematologic toxicities were nausea/vomiting, dysphagia, stomatitis, xerostomia and in-field dermatitis, acneiform rash, and diarrhea. Of the 31 patients receiving a 150-mg daily dose of erlotinib, 23 (74%; 95% confidence interval, 56.8%-86.3%) had a complete response, 3 were disease free after salvage surgery, 4 had inoperable residual disease, and 1 died of sepsis during treatment. With a median 37 months` follow-up, the 3-year progression-free and overall survival rates were 61% and 72%, respectively. Conclusions: This combination appears safe, has encouraging activity, and deserves further studies in locally advanced HNSCC. (C) 2010 Elsevier Inc.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
Resumo:
Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies. The Brain Bank of the Brazilian Aging Brain Research Group (BBBABSG) of the University of Sao Paulo Medical School (USPMS) collaborates with researchers interested in neuroimaging-neuropathological correlation studies providing brains submitted to postmortem MRI in-situ. In this paper we describe and discuss the parameters established by the BBBABSG to select and to handle brains for fine-scale neuroimaging-neuropathological correlation studies, and to exclude inappropriate/unsuitable autopsy brains. We tried to assess the impact of the postmortem time and storage of the corpse on the quality of the MRI scans and to establish fixation protocols that are the most appropriate to these correlation studies. After investigation of a total of 36 brains, postmortem interval and low body temperature proved to be the main factors determining the quality of routine MRI protocols. Perfusion fixation of the brains after autopsy by mannitol 20% followed by formalin 20% was the best method for preserving the original brain shape and volume, and for allowing further routine and immunohistochemical staining. Taken to together, these parameters offer a methodological progress in screening and processing of human postmortem tissue in order to guarantee high quality material for unbiased correlation studies and to avoid expenditures by post-imaging analyses and histological processing of brain tissue.
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
The E7 transforming protein of Human Papillomavirus type 16 (HPV16) is expressed in the skin of a line of RIB mice transgenic for the E6 and E7 open reading frames of HPV16 driven from the alpha A crystallin promoter (FVB alpha AcryHPV16E6E7). We have transferred skin from FVB alpha AcryHPV16E6E7 mice to naive or E7-primed syngeneic NE recipients to assess whether the E7 protein of HPV16 can function as a minor transplantation antigen (MTA) and promote skin graft rejection. FVB mice did not reject E7 expressing tail or flank skin grafts. E7 immunized FVB x C57BL/6J mice recipients of FVB alpha AcryHPV16E6E7 x C57BL/6J skin generated humoral and DTH responses to E7 in vivo and E7-specific CTL precursors in the spleen, but failed to reject 57 expressing tail skin grafts by 100 days posttransfer. Thus although HPV16 E7 + ve mesenchymal and endodermal tumors can be eliminated by an E7-specific immune response, the same protein is unable to act as a MTA and promote graft rejection when expressed in skin cells. Lack of rejection of grafts expressing MTAs such as E7 may be relevant to the immunology of epithelial tumors expressing tumor-specific antigens and to our understanding of the immunology of diseases of the skin. (C) 1997 Academic Press.
Resumo:
The aim of this study was to confirm that the radiation doses received by attendants who manually restrain infants during fluoroscopic procedures are low. Doses to the hands and neck of three radiologists and three nurses performing or assisting at all the fluoroscopic procedures in a children's hospital were measured for 1 month using thermoluminescent dosemeters. All fluoroscopy on children at this hospital is performed without an antiscatter grid. Total doses for the neck ranged from 20 to 50 mu Sv per week and for hands from 40 to 210 mu Sv per week. These doses were shared by the three radiologists and the three nurses. Individual doses received per staff member are very small when compared with the doses received by interventional radiology staff. Doses received by staff in this study were of the order of 5% of the limit advised by the National Health and Medical Research Council of Australia (NHMRC) for radiation workers. Nurses received larger doses than radiologists and steps will be taken to reduce this dose further.
Resumo:
The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower gl-owing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (C) 1997 John Wiley & Sons, Inc.