891 resultados para size and shape
Resumo:
Abstract. Based on prior field observations, we hypothesized that individual and interacting effects of plant size, density, insect herbivory, and especially fungal disease, influenced seedling and juvenile plant growth in native Platte thistle populations (Cirsium canescens Nutt.). We worked at Arapaho Prairie in the Nebraska Sandhills (May - August 2007), monitoring plant growth, insect damage, and fungal infection within different density thistle patches. In the main experiment, we sprayed half of test plants in different density patches with fungicide (Fungonil© Bonide, containing chlorothalonil) and half with a water control. Fungal infection rates were very low, so we found no difference in fungal attack between these treatments. However, plants that received the fungicide treatment had significantly faster growth over the season than did the control plants. At the same time, plants in the fungicide treatment had significantly reduced insect herbivory. These results strongly suggest that the fungicide had insecticidal effects and that insect herbivory significantly decreases juvenile Platte thistle growth. Further, damage by insect herbivores tended to be higher for larger plants, and herbivory was variable among different patches. However, plant density did not appear to have a large effect on the amount of insect herbivory that individual juvenile Platte thistle plants received. In the second experiment, we examined germination and survival success in relationship to seed density, and found that germination success was higher in areas of lower seed density. In the third experiment, we tested germination for filled seeds categorized primarily by color variation and size, and found no difference in germination related to either color or seed weight. We conclude that seed density, but not seed quality as estimated by color or size, affects germination success. Further, although herbivory was not significantly affected by plant density at any of the scales examined, insect herbivory significantly reduces the growth and success of juveniles of this characteristic native sand prairie plant.
Resumo:
The centrifuge technique was used to investigate the influence of particle size, applied compression, and substrate material (stainless steel, glass, Teflon, and poly(vinyl chloride)) on particle-surface adhesion force. For this purpose, phosphatic rock (rho(p) = 3090 kg/m(3)) and manioc starch particles (rho(p) = 1480 kg/m(3)) were used as test particles. A microcentrifuge that reached a maximum rotation speed of 14 000 rpm and which contained specially designed centrifuge tubes was used in the adhesion force measurements. The curves showed that the adhesion force profile followed a normal log distribution. The adhesion force increased linearly with particle size and with the increase of each increment of compression force. The manioc starch particles presented greater adhesion forces than the phosphatic rock particles for all particle sizes studied. The glass substrate showed a higher adherence than the other materials, probably due to its smoother topographic surface roughness in relation to the other substrata.
Resumo:
Wild bearded capuchin monkeys, Cebus libidinosus, use stone tools to crack palm nuts to obtain the kernel. In five experiments, we gave 10 monkeys from one wild group of bearded capuchins a choice of two nuts differing in resistance and size and/or two manufactured stones of the same shape, volume and composition but different mass. Monkeys consistently selected the nut that was easier to crack and the heavier stone. When choosing between two stones differing in mass by a ratio of 1.3:1, monkeys frequently touched the stones or tapped them with their fingers or with a nut. They showed these behaviours more frequently before making their first selection of a stone than afterward. These results suggest that capuchins discriminate between nuts and between stones, selecting materials that allow them to crack nuts with fewer strikes, and generate exploratory behaviours to discriminate stones of varying mass. In the final experiment, humans effectively discriminated the mass of stones using the same tapping and handling behaviours as capuchins. Capuchins explore objects in ways that allow them to perceive invariant properties (e.g. mass) of objects, enabling selection of objects for specific uses. We predict that species that use tools will generate behaviours that reveal invariant properties of objects such as mass; species that do not use tools are less likely to explore objects in this way. The precision with which individuals can judge invariant properties may differ considerably, and this also should predict prevalence of tool use across species. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cooperation between individuals is an important requisite for the maintenance of social relationships. The purpose of this study was to investigate cooperation in children in the school environment, where individuals could cooperate or not with their classmates in a public goods game. We investigated which of the following variables influenced cooperation in children: sex, group size, and information on the number of sessions. Group size was the only factor to significantly affect cooperation, with small-group children cooperating significantly more than those in large groups. Both sex and information had no effect on cooperation. We suggest that these results reflect the fact that, in small groups, individuals were more efficient in controlling and retaliating theirs peers than in large groups. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In Odonata, many species present sexual size dimorphism (SSD), which can be associated with male territoriality in Zygoptera. We hypothesized that in the territorial damselfly Argia reclusa, male-male competition can favor large males, and consequently, drive selection pressures to generate male-biased SSD. The study was performed at a small stream in southeastern Brazil. Males were marked, and we measured body size and assessed the quality of territories. We tested if larger territorial males (a) defended the best territories (those with more male intrusions and visiting females), (b) won more fights, and (c) mated more. Couples were collected and measured to show the occurrence of sexual size dimorphism. Results indicated that males are larger than females, and that territorial males were larger than non-territorial males. Larger territorial males won more fights and defended the best territories. There was no difference between the mating success of large territorial and small non-territorial males. Although our findings suggest that male territoriality may play a significant role on the evolution of sexual size dimorphism in A. reclusa, we suggest that other factors should also be considered to explain the evolution of SSD in damselflies, since non-territorial males are also capable of acquiring mates.
Resumo:
The identification of color vision types in primates is fundamental to understanding the evolution and biological function of color perception. The Hard, Randy, and Rittler (HRR) pseudoisochromatic test categorizes human color vision types successfully. Here we provide an experimental setup to employ HRR in a nonhuman primate, the capuchin (Cebus libidinosus), a platyrrhine with polymorphic color vision. The HRR test consists of plates with a matrix composed of gray circles that vary in size and brightness. Differently colored circles form a geometric shape (X, O, or Delta) that is discriminated visually from the gray background pattern. The ability to identify these shapes determines the type of dyschromatopsy (deficiency in color vision). We tested six capuchins in their own cages under natural sunlight. The subjects chose between two HRR plates in each trial: one with the gray pattern only and the other with a colored shape, presented on the left or right side at random. We presented the test 40 times and calculated the 95 % confidence limits for chance performance based on the binomial test. We also genotyped all subjects for exons 3 and 5 of the X-linked opsin genes. The HRR test diagnosed two subjects as protan dichromats (missing or defective L-cone), three as deutan dichromats (missing or defective M-cone), and one female as trichromat. Genetic analysis supported the behavioral data for all subjects. These findings show that the HRR test can be applied to diagnose color vision in nonhuman primates.
Resumo:
We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20-100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (vertical bar E vertical bar(max)) when excited at 514 nm, the Au nanocubes displayed higher vertical bar E vertical bar(max) values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in vertical bar E vertical bar(max) as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.
Resumo:
The objective of this work was to study the morphology and biometry of the infraorbital foramen (FIO), variations in its shape, size and number as well as to obtain measurements of its location. 60 dry skulls were analyzed. The test of Qui-quadrant and the T Test were used in measurements with a 5% significance. On the right side, the FIO was measured at a distance of 6.49(+/- 1.68) mm from the lower, 39.65(+/- 3) mm from the upper, 17.7(+/- 2.97) mm from the medial and 20.46(+/- 2.9) mm from the lateral margin of the orbit; its pear-shaped opening distance was 13.67(+/- 2.17) mm. On the left side, the distance of the FIO to the lower margin of the orbit was 6.52(+/- 1.82) mm; to the upper margin was 39.9(+/- 2.62) mm and to the lateral and medial margin were 17.93(+/- 2.58) mm and 21.12(+/- 3) mm, respectively; its distance to the pear-shaped opening was 14.26(+/- 1.83) mm. It was found predominately in an oval shape, in 39 (65%) of the skulls, on both sides. Accessory foramens were present in 11 samples on the right and in 15 samples on the left side. The FIO was most frequently found on the side of, or laterally to the sagittal plane that passes through the middle of the supraorbital foramen/incisures, in 38 skulls (63.3%) on the right side and in 45 skulls (75%) on the left and middle to the zigomatic-maxillary suture, in 41 skulls (68.3%) on right and in 42 skulls (70%) on the left side, besides being most frequently found in a region between the first and second premolars, in 22 skulls (36.7%) on the right side and in 17 skulls (28.3%) on the left.
Resumo:
The effect of the relationship between particle size (d), inter-particle distance (x(i)), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x(i)/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x(i)/d can be always obtained. For y >= 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x(i)/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x(i)/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x(i)/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
Resumo:
The pressures for land use change have led to an increasing isolation of habitat remnants throughout the world. The goal of this study was to estimate the population size and density of some endemic and threatened species in a nature reserve in the Cerrado biome. One hundred and thirty four point transects were undertaken at the Estacao Ecologica de Itirapina (EEI), one of the last natural grassland savannah remnants in Sao Paulo state, in the south-east of Brazil between September and December 2006 and densities estimated for seven species (four endemic to the Cerrado, one near-endemic and two grassland specialists). Neither species reached the minimum viable population size of 500-5000 individuals. Four species, White-banded Tanager, White-rumped Tanager, Black-throated Saltator and Sharp-tailed Tyrant have populations ranging from 112 to 248 individuals, while the other species have a low population (< 60 individuals). The mean densities of Sharp-tailed Tyrant and Cock-tailed Tyrant in the EEI grassland showed similar values to those observed in larger areas of the Cerrado, which may indicate that the EEL grassland area is well conserved. In spite of the restricted size of the EEI, small areas can maintain some endemic and threatened bird populations, thus contributing to local biodiversity and the ecological processes in the region. The capacity of fragments of Cerrado (similar to 2,000 ha) to maintain populations of endemic and threatened bird species is unlikely to be effective in the long term.
Resumo:
In this communication, we investigate the effect of different surfactants: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP-K40) on the growth process of zinc molybdate (beta-ZnMoO4) microcrystals synthesized under hydrothermal conditions at 140 degrees C for 8 h. These microcrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) measurements. XRD patterns proved that these crystals are monophasic and present a wolframite-type monoclinic structure. FE-SEM images revealed that the surfactants modified the crystal shapes, suggesting the occurrence of distinct crystal growth processes. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of rectangle-like crystals, SDS anionic surfactant induces a growth of irregular hexagons with several porous due to considerable size effect of counter-ions on the crystal facets, PVP-K40 non-ionic surfactant allows a reduction in size and thickness of plate-like crystals, while without surfactants have the formation of irregular plate-like crystals. Finally, the PL properties of beta-ZnMoO4 microcrystals were explained by means of different shape/size, surface defects and order-disorder into lattice. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Since instrumentation of the apical foramen has been suggested for cleaning and disinfection of the cemental canal, selection of the file size and position of the apical foramen have challenging steps. This study analyzed the influence of apical foramen lateral opening and file size can exert on cemental canal instrumentation. Thirty-four human maxillary central incisors were divided in two groups: Group 1 (n=17), without flaring, and Group 2 (n=17), with flaring with LA Axxess burs. K-files of increasing diameters were progressively inserted into the canal until binding at the apical foramen was achieved and tips were visible and bonded with ethyl cyanoacrylate adhesive. Roots/files set were cross-sectioned 5 mm from the apex. Apices were examined by scanning electron microscopy at ×140 and digital images were captured. Data were analyzed statistically by Student’s t test and Fisher’s exact test at 5% significance level. SEM micrographs showed that 19 (56%) apical foramina emerged laterally to the root apex, whereas 15 (44%) coincided with it. Significantly more difficulty to reach the apical foramen was noted in Group 2. Results suggest that the larger the foraminal file size, the more difficult the apical foramen instrumentation may be in laterally emerged cemental canals.
Resumo:
In this work, the synthetic hydroxyapatite (HAP) was studied using different preparation routes to decrease the crystal size and to study the temperature effect on the HAP nano-sized hydroxyapatite crystallization. X-ray diffraction (XRD) analysis indicated that all samples were composed by crystalline and amorphous phases . The sample with greater quantity of amorphous phase (40% of total mass) was studied. The nano-sized hydroxyapatite powder was heated and studied at 300, 500, 700, 900 and 1150 °C. All samples were characterized by XRD and their XRD patterns refined using the Rietveld method. The crystallites presented an anisotropic form, being larger in the [001] direction. It was observed that the crystallite size increased continuously with the heating temperature and the eccentricity of the ellipsoidal shape changed from 2.75 at 300 °C to 1.94, 1.43, 1.04 and 1.00 respectively at 500, 700, 900 and 1150 °C. In order to better characterize the morphology of the HAP the samples were also examined using atomic force microscopy (AFM), infrared spectrometry (IR) and thermogravimetric analysis (TGA).
Resumo:
Complexes of polyelectrolytes with defined charge distance and different dendrimer counterions Magdalena Chelmecka Max Planck Institute for Polymer Research; Ackermannweg 10; D-55128 Mainz ; Tel.: (+49) 06131- 379 – 226 A study of complexes in solution is of interest to investigate whether the formation of well-defined assemblies like in classical surfactant systems is possible. Aim of this thesis is to investigate the electrostatic self-assembly of linear polycations of varying charge distance with “large” counterions of varying architecture. We especially investigate the morphology of objects formed, but also their stability under salt free condition and after low molecular mass salt addition. As polycations, Poly(dialkylimino)-alkylene salts (Ionenes) I65MeBr and I25MeBr were chosen. Ionenes are synthesized via Menschutkin reaction and characterized by standard methods. Counterions are Polyamidoamine (PAMAM) dendrimers of generations G2.5, G5.5, G7.5 with -COONa surface groups and shape-persistent, Polyphenylene dendrimers of generation G1 with surface -COOH groups. A complex interplay of interactions is expected to direct the self assembly via electrostatic interaction, geometric factors, hydrophobic interaction or hydrogen bonds. Methods used for the investigation of complexes are: UV-spectroscopy, pH-metric techniques, dynamic and static light scattering, small angle neutron scattering, potential measurements and potentiometric titration. Under certain conditions, (i.e. charge ratio of compounds, charge density of ionene and dendrimer also concentration of sample) polyelectrolyte systems composed of ionenes and dendrimers build complexes in solution. System compounds are typical polyelectrolytes, but structures which they build behave not usual for typical polyelectrolytes. In a one diffusion mode regime aggregates of about 100 nm hydrodynamic radius have been found. Such aggregates are core-shell or anisotropic core shell structures in the case of ionenes/PAMAM dendrimers complexes. These complexes are stable even at high ionic strength. In case of ionenes with poly(phenylene) dendrimers, hard sphere-like objects or spherical objects with hairy-like surface have been found in a one diffusion mode regime. Their stability at high ionic strength is lower. For the ionenes/poly(phenylene) dendrimers systems one transition point has been found from one to two diffusion processes, towards increasing ionene concentration, i.e. for the samples with fixed dendrimer concentration towards increasing ionic strength. For the diffusion profile of ionene/PAMAM dendrimers in most cases two transition regimes are observed. One at very low ionene concentration, the second one at high ionene concentrations, which again means for the samples with fixed dendrimer concentration, also at higher ionic strength. Both two mode regimes are separated by the one mode regime. As was confirmed experimentally, the one diffusion mode regime is caused by the motion of well defined assemblies. The two diffusion mode regimes are caused by the movement of different sized species in solution, large aggregates and middle-size aggregates (oligoaggregates). The location and also the number of transition points in the diffusion profiles is dependent on the ionene to dendrimer charge ratio, charge density of the compounds and concentration. No influence of the molecular mass of the ionene has been found. The aggregates are found to be charged on the surface, however this surface charge does not significantly influence the diffusion properties of the system.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.