947 resultados para single-stranded DNA binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. © 2014 Jiwaji et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis is a chronically debilitating helminth infection with a significant socio-economic and public health impact. Accurate diagnostics play a pivotal role in achieving current schistosomiasis control and elimination goals. However, many of the current diagnostic procedures, which rely on detection of schistosome eggs, have major limitations including lack of accuracy and the inability to detect pre-patent infections. DNA-based detection methods provide a viable alternative to the current tests commonly used for schistosomiasis diagnosis. Here we describe the optimisation of a novel droplet digital PCR (ddPCR) duplex assay for the diagnosis of Schistosoma japonicum infection which provides improved detection sensitivity and specificity. The assay involves the amplification of two specific and abundant target gene sequences in S. japonicum; a retrotransposon (SjR2) and a portion of a mitochondrial gene (nad1). The assay detected target sequences in different sources of schistosome DNA isolated from adult worms, schistosomules and eggs, and exhibits a high level of specificity, thereby representing an ideal tool for the detection of low levels of parasite DNA in different clinical samples including parasite cell free DNA in the host circulation and other bodily fluids. Moreover, being quantitative, the assay can be used to determine parasite infection intensity and, could provide an important tool for the detection of low intensity infections in low prevalence schistosomiasis-endemic areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin-proteasome pathway. Here, we identify von Hippel-Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel-Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin-VHL-proteasome pathway in the integration-transcription transition of the viral replication cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the association between fatty acid binding protein 4 (FABP4) and pre-eclampsia risk in women with type 1 diabetes.
Reesearch Design and Methods: Serum FABP4 was measured in 710 women from the Diabetes and Pre-eclampsia Intervention Trial (DAPIT) in early pregnancy and in the second trimester (median 14 and 26 weeks gestation, respectively).
Results: FABP4 was significantly elevated in early pregnancy (geometric mean 15.8 ng/mL [interquartile range 11.6–21.4] vs. 12.7 ng/mL [interquartile range 9.6–17]; P < 0.001) and the second trimester (18.8 ng/mL [interquartile range 13.6–25.8] vs. 14.6 ng/mL [interquartile range 10.8–19.7]; P < 0.001) in women in whom pre-eclampsia later developed. Elevated second-trimester FABP4 level was independently associated with pre-eclampsia (odds ratio 2.87 [95% CI 1.24, 6.68], P = 0.03). The addition of FABP4 to established risk factors significantly improved net reclassification improvement at both time points and integrated discrimination improvement in the second trimester.
Conclusions: Increased second-trimester FABP4 independently predicted pre-eclampsia and significantly improved reclassification and discrimination. FABP4 shows potential as a novel biomarker for pre-eclampsia prediction in women with type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. Patients and methods. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student’s t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student’s t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. Results. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio compared to breast density after stratification of the study population by menopausal status (premenopausal and postmenopausal) showed that there was no association between the plasma of growth factors and breast density, neither in premenopausal nor in postmenopausal patients. Multivariate analysis showed that only nulliparity, premenopausal status and body mass index (BMI) are determinants of breast density. Conclusions. Our study provides a strong evidence of a crude association between breast density and plasma levels of IGF-1 and molar ratio. On the basis of our results, it is reasonable to assume that the role of IGF-1 and molar ratio in the pathogenesis of breast cancer might be mediated through mammographic density. IGF-1 and molar ratio might thus increase the risk of cancer by increasing mammographic density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of the Leptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA primeprotein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain of Leptospira interrogans , the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel strategy for selective and sensitive electrochemical lead ion (Pb2+) biosensor was developed based on the single-stranded DNAzyme catalytic beacon. A DNAzyme that requires Pb2+ for activation was selected and labeled with redox-active ferrocene (Fc) for signal transducer. The Fc-labeled single-stranded DNAzyme (Fc-ssDNAzyme) was self-assembled through SAu bonding on a gold electrode surface. In the presence of Pb2+, the ssDNAzyme was activated and catalyzed the hydrolytic cleavage of the substrate strand, resulting in the removal of the substrate strand along with the Fc from the Au electrode surface. The dissociation of Fc caused a decrease of electrochemical signal ("signal-off"). Under the optimal conditions, the electrochemical signal of Fc decreased directly with the increasing Pb2+ concentration, exhibiting a linear response in the range of 0.5nM to 5μM with a detection limit of 0.25nM. This strategy is simple, sensitive and selective with the minimal reagents and working steps, thereby holds great potential for Pb2+ detection in real environmental sample analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There is evolving evidence that vitamin D insufficiency may contribute to food allergy, but findings vary between populations. Lower vitamin D-binding protein (DBP) levels increase the biological availability of serum vitamin D. Genetic polymorphisms explain almost 80% of the variation in binding protein levels. OBJECTIVE: We sought to investigate whether polymorphisms that lower the DBP could compensate for adverse effects of low serum vitamin D on food allergy risk. METHODS: From a population-based cohort study (n = 5276) we investigated the association between serum 25-hydroxyvitamin D3 (25[OH]D3) levels and food allergy at age 1 year (338 challenge-proven food-allergic and 269 control participants) and age 2 years (55 participants with persistent and 50 participants with resolved food allergy). 25(OH)D3 levels were measured using liquid chromatography-tandem mass spectrometry and adjusted for season of blood draw. Analyses were stratified by genotype at rs7041 as a proxy marker of DBP levels (low, the GT/TT genotype; high, the GG genotype). RESULTS: Low serum 25(OH)D3 level (≤50 nM/L) at age 1 years was associated with food allergy, particularly among infants with the GG genotype (odds ratio [OR], 6.0; 95% CI, 0.9-38.9) but not in those with GT/TT genotypes (OR, 0.7; 95% CI, 0.2-2.0; P interaction = .014). Maternal antenatal vitamin D supplementation was associated with less food allergy, particularly in infants with the GT/TT genotype (OR, 0.10; 95% CI, 0.03-0.41). Persistent vitamin D insufficiency increased the likelihood of persistent food allergy (OR, 12.6; 95% CI, 1.5-106.6), particularly in those with the GG genotype. CONCLUSIONS: Polymorphisms associated with lower DBP level attenuated the association between low serum 25(OH)D3 level and food allergy, consistent with greater vitamin D bioavailability in those with a lower DBP level. This increases the biological plausibility of a role for vitamin D in the development of food allergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1(+)/CIMP2(-)/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER(-)/PR(-)/HER2(-); MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm(3), and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm(3). In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm(3) within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV), we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.