919 resultados para single event effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wird eine detaillierte Untersuchung und Charakterisierung der Zwei-Photonen-induzierten Fluoreszenzverstärkung von organischen Farbstoffen auf plasmonischen Nanostrukturen vorgestellt. Diese Fluoreszenzverstärkung ist insbesondere für hochaufgelöste Fluoreszenzmikroskopie und Einzelmolekülspektroskopie von großer Bedeutung. Durch die Zwei-Photonen-Anregung resultiert eine Begrenzung des Absorptionsprozesses auf das fokale Volumen. In Kombination mit dem elektrischen Nahfeld der Nanostrukturen als Anregungsquelle entsteht eine noch stärkere Verringerung des Anregungsvolumens auf eine Größe unterhalb der Beugungsgrenze. Dies erlaubt die selektive Messung ausgewählter Farbstoffe. Durch die Herstellung der Nanopartikel mittels Kolloidlithografie wird eine definierte, reproduzierbare Geometrie erhalten. Polymermultischichten dienen als Abstandshalter, um die Farbstoffe an einer exakten Distanz zum Metall zu positionieren. Durch die kovalente Anbindung des Farbstoffs an die oberste Schicht wird eine gleichmäßige Verteilung des Farbstoffs in geringer Konzentration erhalten. rnEs wird eine Verstärkung der Fluoreszenz um den Faktor 30 für Farbstoffe auf Goldellipsen detektiert, verglichen mit Farbstoffen außerhalb des Nahfelds. Sichelförmige Nanostrukturen erzeugen eine Verstärkung von 120. Dies belegt, dass das Ausmaß der Fluoreszenzverstärkung entscheidend von der Stärke des elektrischen Nahfelds der Nanostruktur abhängt. Auch das Material der Nanostruktur ist hierbei von Bedeutung. So erzeugen Silberellipsen eine 1,5-fach höhere Fluoreszenzverstärkung als identische Goldellipsen. Distanzabhängige Fluoreszenzmessungen zeigen, dass die Zwei-Photonen-angeregte Fluoreszenzverstärkung an strukturspezifischen Abständen zum Metall maximiert wird. Elliptische Strukturen zeigen ein Maximum bei einem Abstand von 8 nm zum Metall, wohingegen bei sichelförmigen Nanostrukturen die höchste Fluoreszenzintensität bei 12 nm gemessen wird. Bei kleineren Abständen unterliegt der Farbstoff einem starken Löschprozess, sogenanntes Quenching. Dieses konkurriert mit dem Verstärkungsprozess, wodurch es zu einer geringen Nettoverstärkung kommt. Hat die untersuchte Struktur Dimensionen größer als das Auflösungsvermögen des Mikroskops, ist eine direkte Visualisierung des elektrischen Nahfelds der Nanostruktur möglich. rnrnEin weiterer Fokus dieser Arbeit lag auf der Herstellung neuartiger Nanostrukturen durch kolloidlithografische Methoden. Gestapelte Dimere sichelförmiger Nanostrukturen mit exakter vertikaler Ausrichtung und einem Separationsabstand von etwa 10 nm wurden hergestellt. Die räumliche Nähe der beiden Strukturen führt zu einem Kopplungsprozess, der neue optische Resonanzen hervorruft. Diese können als Superpositionen der Plasmonenmoden der einzelnen Sicheln beschrieben werden. Ein Hybridisierungsmodell wird angewandt, um die spektralen Unterschiede zu erklären. Computersimulationen belegen die zugrunde liegende Theorie und erweitern das Modell um experimentell nicht aufgelöste Resonanzen. rnWeiterhin wird ein neuer Herstellungsprozess für sichelförmige Nanostrukturen vorgestellt, der eine präzise Formanpassung ermöglicht. Hierdurch kann die Lage der Plasmonenresonanz exakt justiert werden. Korrelationen der geometrischen Daten mit den Resonanzwellenlängen tragen zum grundlegenden Verständnis der Plasmonenresonanzen bei. Die vorgestellten Resultate wurden mittels Computersimulationen verifiziert. Der Fabrikationsprozess erlaubt die Herstellung von Dimeren sichelförmiger Nanostrukturen in einer Ebene. Durch die räumliche Nähe überlappen die elektrischen Nahfelder, wodurch es zu kopplungs-induzierten Shifts der Plasmonenresonanzen kommt. Der Unterschied zu theoretisch berechneten ungekoppelten Nanosicheln kann auch bei den gegenüberliegenden sichelförmigen Nanostrukturen mit Hilfe des Plasmonenhybridisierungsmodells erklärt werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA damage causes replication errors, leading to genetic instability or cell death. Besides that, many types of DNA base modifications have been shown to interfere with transcriptional elongation if they are located in the transcribed DNA strand of active genes, acting as roadblocks for RNA polymerases. It is widely assumed that transcription blockage by endogenous DNA damage is responsible for the early cell senescence in organs and accelerated ageing observed in individuals with compromised nucleotide excision repair.rnThe aims of this work were to design new experimental systems for testing transcription blocking potentials of DNA base modifications in an individual gene and to apply these test systems to the investigation of the effects of a frequent endogenously generated base modification, namely 8-oxo-7,8-hydroxyguanine (8-oxoG), on the gene transcription in cells. Several experimental strategies were employed for this purpose. First, I constructed an episomal vector encoding for a short-lived EGFP-ODC fusion protein and measured expression of the reporter gene in permanently transfected clonal cell lines exposed to DNA damaging agents. Second, the expression of plasmid-borne EGFP gene damaged with photosensitisers to obtain one or several oxidative purine modifications per plasmid molecule was determined in transiently transfected human and mouse host cells in an approach known as “host cell reactivation”. As a prerequisite for these experiments, a robust method of precise quantitative measurement of the EGFP gene expression in transiently transfected cells by flow cytometry was developed and validated. Third, I elaborated a very efficient procedure for insertion of synthetic oligonucleotides carrying 8-oxoG into plasmid DNA, avoiding any unwanted base damage and strand breaks. The consequences of 8-oxoG placed in defined positions in opposing DNA strands of the EGFP gene for transcription were measured by host cell reactivation in cells with functional 8-oxoguanine DNA glycosylase (OGG1) gene and in OGG1 null cells.rnThe results obtained in Ogg1-/- cells demonstrated that unrepaired 8-oxoG, even if situated in the transcribed DNA strand, does not have any negative effect on the reporter gene transcription. On the other hand, as few as one 8-oxoG was sufficient to cause a significant decrease of the gene expression in OGG1-proficient cell lines, i.e. in the presence of base excision repair. For two analysed positions of 8-oxoG in the plasmid DNA, the inhibition of gene transcription by the base modification correlated with the efficiency of its excision by purified OGG1 protein under cell-free conditions. Based on these findings, it has to be concluded that the observed decrease of transcription is mediated by excision of the base modification by OGG1 and probably caused by the repair-induced single-strand breaks. The mechanism of transcription inhibition by 8-oxoG is therefore clearly distinct from stalling of elongating RNA polymerase II complexes at the modified base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonicotinoids have been pointed to as a factor responsible for the increased honey bee colony losses in the last decades. Many studies have investigated the effects of the first marketed neonicotinoid, imidacloprid, while fewer have focused on thiamethoxam. One recent study showed that sublethal doses of thiamethoxam lead to colony failure by decreasing forager homing flight success. We thus decided to investigate the mechanism which caused this phenomenon. Our hypothesis was that this effect was caused by impairment of forager locomotion abilities. Therefore we tested the effects of sublethal acute and chronic exposures to thiamethoxam on forager walking (Chapter 2) and flight (Chapter 3) performances. The acute treatment (1.34 ng/bee) affected walking locomotion firstly triggering hyperactivity (30 min post-treatment) and then impairing motor functioning (60 min post-treatment). 2-day continuous exposures to thiamethoxam (32.5, 45 ppb) elicited fewer effects on walking locomotion, however both exposure modes elicited an increased positive phototaxis. Similarly, in flight experiments, the single dose (1.34 ng/bee) elicited hyperactivity shortly after intoxication (increased flight duration and distance), while longer and continuous exposures (32.5, 45 ppb) impaired forager motor functions (decreased flight duration, distance, velocity). It is known that flight muscles temperature needs to be precisely regulated by bees during flight. Therefore, we further hypothesized that the impaired flight performances of neonicotinoid intoxicated bees were caused also by thermoregulation anomalies. We tested the effects that acute thiamethoxam exposures (0.2, 1, 2 ng/bee) elicit on forager thorax temperature (Chapter 4). Foragers treated with high doses exhibited hyperthermia or hypothermia when respectively exposed to high or low environmental temperatures. In summary, we show that sublethal doses of thiamethoxam affected forager walking and flight locomotion, phototaxis and thermoregulation. We also display the intricate mode of action of thiamethoxam which triggered, at different extents, inverse sublethal effects in relation to time and dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BLEVE, acronym for Boiling Liquid Expanding Vapour Explosion, is one of the most dangerous accidents that can occur in pressure vessels. It can be defined as an explosion resulting from the failure of a vessel containing a pressure liquefied gas stored at a temperature significantly above its boiling point at atmospheric pressure. This phenomenon frequently appears when a vessel is engulfed by a fire: the heat causes the internal pressure to raise and the mechanical proprieties of the wall to decrease, with the consequent rupture of the tank and the instantaneous release of its whole content. After the breakage, the vapour outflows and expands and the liquid phase starts boiling due to the pressure drop. The formation and propagation of a distructive schock wave may occur, together with the ejection of fragments, the generation of a fireball if the stored fluid is flammable and immediately ignited or the atmospheric dispersion of a toxic cloud if the fluid contained inside the vessel is toxic. Despite the presence of many studies on the BLEVE mechanism, the exact causes and conditions of its occurrence are still elusive. In order to better understand this phenomenon, in the present study first of all the concept and definition of BLEVE are investigated. A historical analysis of the major events that have occurred over the past 60 years is described. A research of the principal causes of this event, including the analysis of the substances most frequently involved, is presented too. Afterwards a description of the main effects of BLEVEs is reported, focusing especially on the overpressure. Though the major aim of the present thesis is to contribute, with a comparative analysis, to the validation of the main models present in the literature for the calculation and prediction of the overpressure caused by BLEVEs. In line with this purpose, after a short overview of the available approaches, their ability to reproduce the trend of the overpressure is investigated. The overpressure calculated with the different models is compared with values deriving from events happened in the past and ad-hoc experiments, focusing the attention especially on medium and large scale phenomena. The ability of the models to consider different filling levels of the reservoir and different substances is analyzed too. The results of these calculations are extensively discussed. Finally some conclusive remarks are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical action of the heart is made possible in response to electrical events that involve the cardiac cells, a property that classifies the heart tissue between the excitable tissues. At the cellular level, the electrical event is the signal that triggers the mechanical contraction, inducing a transient increase in intracellular calcium which, in turn, carries the message of contraction to the contractile proteins of the cell. The primary goal of my project was to implement in CUDA (Compute Unified Device Architecture, an hardware architecture for parallel processing created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate the heterogeneity of its structure and how that variability influences the behavior of the cells. In particular, each cell has an intrinsic discharge frequency, thus different from that of every other cell of the tissue and it is interesting to study the process of synchronization of the cells and look at the value of the last discharge frequency if they synchronized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To assess the biological and technical complication rates of single crowns on vital teeth (SC-V), endodontically treated teeth without post and core (SC-E), with a cast post and core (SC-PC) and on implants (SC-I). Material and methods: From 392 patients with chronic periodontitis treated and documented by graduate students during the period from 1978 to 2002, 199 were reexamined during 2005 for this retrospective cohort study, and 64 of these patients were treated with SCs. Statistical analysis included Kaplan–Meier survival functions and event rates per 100 years of object-time. Poisson regression was used to compare the four groups of crowns with respect to the incidence rate ratio of failures, and failures and complications combined over 10 years and the entire observation period. Results: Forty-one (64%) female and 23 (36%) male patients participated in the reexamination. At the time of seating the crowns, the mean patient age was 46.8 (range 24–66.3) years. One hundred and sixty-eight single unit crowns were incorporated. Their mean follow-up time was 11.8 (range 0.8–26.4) years. During the time of observation, 22 biological and 11 technical complications occurred; 19 SC were lost. The chance for SC-V (56) to remain free of any failure or complication was 89.3% (95% confidence interval [CI] 76.1–95.4) after 10 years, 85.8% (95% CI 66–94.5) for SC-E (34), 75.9% for SC-PC (39), (95% CI 58.8–86.7) and 66.2% (95% CI 45.1–80.7) for SC-I (39). Over 10 years, 95% of SC-I remained free of failure and demonstrated a cumulative incidence of failure or complication of 34%. Compared with SC-E, SC-I were 3.5 times more likely to yield failures or complications and SC-PC failed 1.7 times more frequently than did SC-E. SC-V had the lowest rate of failures or complications over the 10 years. Conclusions: While SCs on vital teeth have the best prognosis, those on endodontically treated teeth have a slightly poorer prognosis over 10 years. Crowns on teeth with post and cores and implant-supported SCs displayed the highest incidence of failures and complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To investigate the short-term effects of nonsurgical therapy (scaling and root planing, SRP) on the subgingival microbiota in chronic (CP) and aggressive (AP) periodontal disease. METHOD AND MATERIALS: Ninety-seven CP and AP subjects underwent full-mouth SRP on 2 consecutive days. AP patients were randomly assigned to either receive systemic metronidazole plus amoxicillin (AP+AB) or were treated mechanically alone (AP). Pathogens were identified with 16S rRNA oligodeoxynucleotide probes and dot-blot hybridization before and at days 2, 3, 4, 7, 10, and 21 of healing. CP subjects were treated by scaling and root planing along with placebo tablets. RESULTS: Initially, AP cell counts were 69.9- (Porphyromonas gingivalis), 10.2- (Aggregatibacter actinomycetemcomitans), 5.7- (Tannerella forsythia), and 3.3-fold (Prevotella intermedia) enhanced compared to CP cell counts. Following SRP, immediate elimination occurred in single individuals of all three treatment groups at day 2. After SRP plus antibiotic therapy (AP+AB), the prevalence scores dropped beyond the levels of AP and CP, beginning at day 7, and remained low until day 21 (P =or< .05). Clinical healing statistically benefited from SRP with no differences among the three treatment groups. CONCLUSION: Nonsurgical therapy resulted in both a suppression and early elimination of single taxa immediately after completion of active treatment. Systemic antibiotics significantly accelerate the suppression of the periodontal microflora, but have limited effect on the elimination of target isolates during healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Peri-implantitis is common in patients with dental implants. We performed a single-blinded longitudinal randomized study to assess the effects of mechanical debridement on the peri-implant microbiota in peri-implantitis lesions. MATERIALS AND METHODS: An expanded checkerboard DNA-DNA hybridization assay encompassing 79 different microorganisms was used to study bacterial counts before and during 6 months following mechanical treatment of peri-implantitis in 17 cases treated with curettes and 14 cases treated with an ultrasonic device. Statistics included non-parametric tests and GLM multivariate analysis with p<0001 indicating significance and 80% power. RESULTS: At selected implant test sites, the most prevalent bacteria were: Fusobacterium nucleatum sp., Staphylococci sp., Aggregatibacter actinomycetemcomitans, Helicobacter pylori, and Tannerella forsythia. 30 min. after treatment with curettes, A. actinomycetemcomitans (serotype a), Lactobacillus acidophilus, Streptococcus anginosus, and Veillonella parvula were found at lower counts (p<0.001). No such differences were found for implants treated with the ultrasonic device. Inconsistent changes occurred following the first week. No microbiological differences between baseline and 6-month samples were found for any species or between treatment study methods in peri-implantitis. CONCLUSIONS: Both methods failed to eliminate or reduce bacterial counts in peri-implantitis. No group differences were found in the ability to reduce the microbiota in peri-implantitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular event rates have been shown to increase substantially with the number of symptomatic disease locations. We sought to assess the risk profile, management and subsequent event rates of polyvascular disease patients. Consecutive outpatients were assessed for atherosclerotic risk factors and medications in the REACH Registry. A total of 19,117 symptomatic patients in Europe completed a 2-year follow-up: 77.2% with single arterial bed disease (coronary artery or cerebrovascular or peripheral arterial disease) and 22.8% with polyvascular disease (>/= 1 disease location). Polyvascular disease patients were older (68.5 +/- 9.4 vs 66.3 +/- 9.9 years, p < 0.0001), more often current or former smokers (64.9% vs 58.7%, p < 0.0001), and more often suffered from hypertension (59.5% vs 46.6%, p < 0.0001) and diabetes (34.5% vs 25.9%, p < 0.0001) than single arterial bed disease patients. Despite more intense medical therapy, risk factors (smoking, hypertension, low fasting glucose, and low fasting total cholesterol) were less often controlled in polyvascular disease patients. This was associated with substantially more events over 2 years compared with single arterial bed disease patients (cMACCE [cardiovascular death/non-fatal stroke/non-fatal MI] odds ratio, 1.63 [95% CI, 1.45-1.83], p < 0.0001). In conclusion, polyvascular disease patients have more cardiovascular risk factors, and the prognosis for these patients is significantly worse than for patients with single arterial bed disease. This suggests a need to improve detection and consequent medical treatment of polyvascular disease.