983 resultados para simulation result


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implementation of semiconductor circuits and systems in nano-technology makes it possible to achieve high speed, lower voltage level and smaller area. The unintended and undesirable result of this scaling is that it makes integrated circuits susceptible to soft errors normally caused by alpha particle or neutron hits. These events of radiation strike resulting into bit upsets referred to as single event upsets(SEU), become increasingly of concern for the reliable circuit operation in the field. Storage elements are worst hit by this phenomenon. As we further scale down, there is greater interest in reliability of the circuits and systems, apart from the performance, power and area aspects. In this paper we propose an improved 12T SEU tolerant SRAM cell design. The proposed SRAM cell is economical in terms of area overhead. It is easy to fabricate as compared to earlier designs. Simulation results show that the proposed cell is highly robust, as it does not flip even for a transient pulse with 62 times the Q(crit) of a standard 6T SRAM cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability. DOI: 10.1061/(ASCE)TE.1943-5436.0000455. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and numerical studies of slurry generation using a cooling slope are presented in the paper. The slope having stainless steel body has been designed and constructed to produce semisolid A356 Al alloy slurry. The pouring temperature of molten metal, slope angle of the cooling slope and slope wall temperature were varied during the experiment. A multiphase numerical model, considering liquid metal and air, has been developed to simulate the liquid metal flow along the cooling channel using an Eulerian two-phase flow approach. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling channel following Schiel's equation. The continuity, momentum and energy equations are solved considering thin wall boundary condition approach. During solidification of the melt, based on the liquid fraction and latent heat of the alloy, temperature of the alloy is modified continuously by introducing a modified temperature recovery method. Numerical simulations has been carried out for semisolid slurry formation by varying the process parameters such as angle of the cooling slope, cooling slope wall temperature and melt superheat temperature, to understand the effect of process variables on cooling slope semisolid slurry generation process such as temperature distribution, velocity distribution and solid fraction of the solidifying melt. Experimental validation performed for some chosen cases reveals good agreement with the numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unambiguous evidence for the engagement of CF3 group in N-H center dot center dot center dot F-C hydrogen bond in a low polarity solvent, the first observation of its kind, is reported. The presence of such weak molecular interactions in the solution state is convincingly established by one and two-dimensional H-1, F-19, and natural abundant N-15 NMR spectroscopic studies. The strong and direct evidence is derived by the observation of through-space couplings, such as, (1h)J(FH), (1h)J(FN), and (2h)J(FF), where the spin polarization is transmitted through hydrogen bond. In an interesting example of a molecule containing two CF3 groups getting simultaneously involved in hydrogen bond, where hydrogen bond mediated couplings are not reflected in the NMR spectrum, F-19-F-19 NOESY experiment yielded confirmatory evidence. Significant deviations in the strengths of (1)J(NH), variable temperature, and the solvent induced perturbations yielded additional support. The NMR results are corroborated by both DFT calculations and MD simulations, where the quantitative information on different ways of involvement of fluorine in two and three centered hydrogen bonds, their percentage of occurrences, and geometries have been obtained. The hydrogen bond interaction energies have also been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wheeled mobile robot (WMR) can move on uneven terrains without slip if the wheels are allowed to tilt laterally. This paper deals with the analysis, design and experimentations with a WMR where the wheels can tilt laterally. The wheels of such a WMR must be equipped with two degrees of freedom suspension mechanism. A prototype three-wheeled mobile robot is fabricated with a two degree-of-freedom suspension mechanism. Simulations show that the three-wheeled mobile robot can traverse uneven terrains with very little slip and experiments with the prototype on a representative uneven terrain confirm that the slip is significantly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the motion of one dimensional flexible objects such as ropes, chains, etc., the assumption of constant length is realistic. Moreover,their motion appears to be naturally minimizing some abstract distance measure, wherein the disturbance at one end gradually dies down along the curve defining the object. This paper presents purely kinematic strategies for deriving length-preserving transformations of flexible objects that minimize appropriate ‘motion’. The strategies involve sequential and overall optimization of the motion derived using variational calculus. Numerical simulations are performed for the motion of a planar curve and results show stable converging behavior for single-step infinitesimal and finite perturbations 1 as well as multi-step perturbations. Additionally, our generalized approach provides different intuitive motions for various problem-specific measures of motion, one of which is shown to converge to the conventional tractrix-based solution. Simulation results for arbitrary shapes and excitations are also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses experiments and modeling studies on the use of producer gas, a bio-derived low energy content fuel in a spark-ignited engine. Producer gas, generated in situ, has thermo-physical properties different from those of fossil fuel(s). Experiments on naturally aspirated and turbo-charged engine operation and subsequent analysis of the cylinder pressure traces reveal significant differences in the heat release pattern within the cylinder compared with a typical fossil fuel. The heat release patterns for gasoline and producer gas compare well in the initial 50% but beyond this, producer gas combustion tends to be sluggish leading to an overall increase in the combustion duration. This is rather unexpected considering that producer gas with nearly 20% hydrogen has higher flame speeds than gasoline. The influence of hydrogen on the initial flame kernel development period and the combustion duration and hence on the overall heat release pattern is addressed. The significant deviations in the heat release profiles between conventional fuels and producer gas necessitates the estimation of producer gas-specific Wiebe coefficients. The experimental heat release profiles are used for estimating the Wiebe coefficients. Experimental evidence of lower fuel conversion efficiency based on the chemical and thermal analysis of the engine exhaust gas is used to arrive at the Wiebe coefficients. The efficiency factor a is found to be 2.4 while the shape factor m is estimated at 0.7 for 2% to 90% burn duration. The standard Wiebe coefficients for conventional fuels and fuel-specific coefficients for producer gas are used in a zero D model to predict the performance of a 6-cylinder gas engine under naturally aspirated and turbo-charged conditions. While simulation results with standard Wiebe coefficients result in excessive deviations from the experimental results, excellent match is observed when producer gas-specific coefficients are used. Predictions using the same coefficients on a 3-cylinder gas engine having different geometry and compression ratio(s) indicate close match with the experimental traces highlighting the versatility of the coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Success in the advancement of thermoacoustic field led the researchers to develop the thermoacoustic engines which found its applications in various fields such as refrigeration, gas mixture separation, natural gas liquefaction, and cryogenics. The objective of this study is to design and fabricate the twin thermoacoustic heat engine (TAHE) producing the acoustic waves with high resonance frequencies which is used to drive a thermoacoustic refrigerator efficiently by the influence of geometrical parameters and working fluids. Twin TAHE has gained significant attention due to the production of high intensity acoustic waves than single TAHE. In order to drive an efficient thermoacoustic refrigerator, a twin thermoacoustic heat engine is built up and its performance are analysed by varying the resonator length and working fluid. The performance is measured in terms of onset temperature difference, resonance frequency and pressure amplitude of the oscillations generated from twin TAHE. The simulation is performed using free software DeltaEC, from LANL, USA. The simulated DeltaEC results are compared with experimental results and the deviations are found within +10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermoacoustic refrigerator driven by a thermoacoustic primemover is an effective way to produce durable and long lasting refrigeration due to high reliability, no exotic materials, and no moving parts. Resonator geometry is also one of the important factors that influence the performance of a thermoacoustic prime mover, namely, frequency. Computational fluid dynamics simulation of performance comparison of thermoacoustic prime mover with a straight and tapered resonator is chosen for the present study under an identical stack condition with the air as a working fluid. The frequency and pressure amplitude of oscillations obtained from simulation results were found to be more in the tapered resonator than the straight resonator. Apart from computational fluid dynamics simulation, the simulation studies have also been conducted using design environment for low-amplitude thermoacoustic energy conversion, which predicts the performance of thermoacoustic primemover comparatively well. Simulation results from computational fluid dynamics and design environment for low-amplitude thermoacoustic energy conversion were compared and found to be matching well, representing the good validity of computational fluid dynamics modeling.