849 resultados para signal-to-noise-ratio (SNR)
Resumo:
Advances in three-dimensional (313) electron microscopy (EM) and image processing are providing considerable improvements in the resolution of subcellular volumes, macromolecular assemblies and individual proteins. However, the recovery of high-frequency information from biological samples is hindered by specimen sensitivity to beam damage. Low dose electron cryo-microscopy conditions afford reduced beam damage but typically yield images with reduced contrast and low signal-to-noise ratios (SNRs). Here, we describe the properties of a new discriminative bilateral (DBL) filter that is based upon the bilateral filter implementation of Jiang et al. (Jiang, W., Baker, M.L., Wu, Q., Bajaj, C., Chin, W., 2003. Applications of a bilateral denoising filter in biological electron microscopy. J. Struc. Biol. 128, 82-97.). In contrast to the latter, the DBL filter can distinguish between object edges and high-frequency noise pixels through the use of an additional photometric exclusion function. As a result, high frequency noise pixels are smoothed, yet object edge detail is preserved. In the present study, we show that the DBL filter effectively reduces noise in low SNR single particle data as well as cellular tomograms of stained plastic sections. The properties of the DBL filter are discussed in terms of its usefulness for single particle analysis and for pre-processing cellular tomograms ahead of image segmentation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.
Resumo:
We report a novel real-time homodyne coherent receiver based on a DPSK optical-electrical-optical (OEO) regenerator used to extract a carrier from carrier-less phase modulated signals based on feed-forward based modulation stripping. The performance of this non-DSP based coherent receiver was evaluated for 10.66Gbit/s BPSK signals. Self-homodyne coherent detection and homodyne detection with an injection-locked local oscillator laser was demonstrated. The performance was evaluated by measuring the electrical signal-to-noise (SNR) and recording the eye diagrams. Using injection-locking for the LO improves the performance and enables homodyne detection with optical injection-locking to operate with carrier-less BPSK signals without the need for polarization multiplexed pilot-tones.
Resumo:
Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.
Resumo:
In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^
Resumo:
We present Spitzer IRS mid-infrared spectra for 15 gravitationally lensed, 24 μm-selected galaxies, and combine the results with four additional very faint galaxies with IRS spectra in the literature. The median intrinsic 24 μm flux density of the sample is 130 μJy, enabling a systematic survey of the spectral properties of the very faint 24 μm sources that dominate the number counts of Spitzer cosmological surveys. Six of the 19 galaxy spectra (32%) show the strong mid-IR continuua expected of AGNs; X-ray detections confirm the presence of AGNs in three of these cases, and reveal AGNs in two other galaxies. These results suggest that nuclear accretion may contribute more flux to faint 24 μm-selected samples than previously assumed. Almost all the spectra show some aromatic (PAH) emission features; the measured aromatic flux ratios do not show evolution from z = 0. In particular, the high signal-to-noise mid-IR spectrum of SMM J163554.2+661225 agrees remarkably well with low-redshift, lower luminosity templates. We compare the rest-frame 8 μm and total infrared luminosities of star-forming galaxies, and find that the behavior of this ratio with total IR luminosity has evolved modestly from z = 2 to z = 0. Since the high aromatic-to-continuum flux ratios in these galaxies rule out a dominant contribution by AGNs, this finding implies systematic evolution in the structure and/or metallicity of infrared sources with redshift. It also has implications for the estimates of star-forming rates inferred from 24 μm measurements, in the sense that at z ~ 2, a given observed frame 24 μm luminosity corresponds to a lower bolometric luminosity than would be inferred from low-redshift templates of similar luminosity at the corresponding rest wavelength.
Resumo:
We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.
Resumo:
Background: Indices predictive of central obesity include waist circumference (WC) and waist-to-height ratio (WHtR). The aims of this study were 1) to establish a Colombian youth smoothed centile charts and LMS tables for WC and WHtR and 2) to evaluate the utility of these parameters as predictors of overweight and obesity. Method: A cross-sectional study whose sample population comprised 7954 healthy Colombian schoolchildren [boys n=3460 and girls n=4494, mean (standard deviation) age 12.8 (2.3) years old]. Weight, height, body mass index (BMI), WC and WHtR and its percentiles were calculated. Appropriate cut-offs point of WC and WHtR for overweight and obesity, as defined by the International Obesity Task Force (IOTF) definitions, were selected using receiver operating characteristic (ROC) analysis. The discriminating power of WC and WHtR was expressed as area under the curve (AUC). Results: Reference values for WC and WHtR are presented. Mean WC increased and WHtR decreased with age for both genders. We found a moderate positive correlation between WC and BMI (r= 0.756, P < 0.01) and WHtR and BMI (r= 0.604, P < 0.01). The ROC analysis showed a high discrimination power in the identification of overweight and obesity for both measures in our sample population. Overall, WHtR was slightly a better predictor for overweight/obesity (AUC 95% CI 0.868-0.916) than the WC (AUC 95% CI 0.862-0.904). Conclusion: This paper presents the first sex- and age-specific WC and WHtR percentiles for both measures among Colombian children and adolescents aged 9–17.9 years. By providing LMS tables for Latin-American people based on Colombian reference data, we hope to provide quantitative tools for the study of obesity and its comorbidities.