919 resultados para shrubland ecosystem
Resumo:
We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.
Resumo:
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Resumo:
The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^
Resumo:
Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Omega arag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Omega arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Omega arag. If the short-term sensitivity of community calcification to Omega arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.
Resumo:
Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.
Resumo:
Grassland birds are highly imperiled because of historical habitat loss and ongoing conversion of grasslands to agricultural and urban land uses. Therefore, prioritizing and further justifying conservation action in remaining grasslands is critical to protecting what remains. Grassland bird conservation has focused on identifying and protecting large grassland complexes referred to as Grassland Bird Conservation Areas (GBCAs). We identified and classified GBCAs in a region highly impacted by both agricultural and urban land conversion using previously developed methods. Then, we extended the analysis to include estimated relative abundance of five grassland focal species in each GBCA. Models of relative abundance were built using eight years of monitoring data collected by citizen scientists. Finally, we quantified the value of ecosystem services provided by each GBCA. There were nearly 55,000 ha of grassland habitats in the Chicago Metropolitan Region that met GBCA criteria, 33% (18,415 ha) of which were protected. Proportion of abundance in protected versus unprotected areas was similar for Bobolink (Dolichonyx oryzivorus; 46%), Grasshopper Sparrow (Ammodramus savannarum; 52%), and Sedge Wren (Cistothorus platensis; 48%), whereas, Henslow’s Sparrow (Ammodramus henslowii; 75%) had a higher proportion of relative abundance in protected GBCAs and Eastern Meadowlark (Sturnella magna) had lower proportions (37%). GBCAs provisioned just under $900 million annually in ecosystem services, 73% of which is because of flood control. Outputs of this comprehensive approach will inform grassland bird conservation by providing detailed information about the value for birds and people of grassland habitats.
Resumo:
The Greater Everglades system imparts vital ecosystem services (ES) to South Florida residents including high quality drinking water supplies and a habitat for threatened and endangered species. As a result of the altered Everglades system and regional dynamics, restoration may either improve the provision of these services or impose a tradeoff between enhanced environmental goods and services and competing societal demands. The current study aims at understanding public preferences for restoration and generating willingness to pay (WTP) values for restored ES through the implementation of a discrete choice experiment. A previous study (Milon et al., 1999) generated WTP values amongst Floridians of up to $3.42 -$4.07 billion for full restoration over a 10-year period. We have collected data from 2,905 respondents taken from two samples who participated in an online survey designed to elicit the WTP values for selected ecological and social attributes included in the earlier study (Milon et al. 1999). We estimate that the Florida general public is willing to pay up to $854.1- $954.1 million over 10 years to avoid restrictions on their water usage and up to $90.8- $183.7 million over 10 years to restore the hydrological flow within the Water Conservation Area.
Resumo:
Net ecosystem calcification rates (NEC) and net photosynthesis (NP) were determined from CO2 seawater parameters on the barrier coral reef of Kaneohe Bay, Oahu, Hawaii. Autosamplers were deployed to collect samples on the barrier reef every 2 hours for six 48-hour deployments, two each in June 2008, August 2009, and January/February 2010. NEC on the Kaneohe Bay barrier reef increased throughout the day and decreased at night. Net calcification continued at low rates at night except for six time periods when net dissolution was measured. The barrier reef was generally net photosynthetic (positive NP) during the day and net respiring (negative NP) at night. NP controlled the diel cycles of the partial pressure of CO2 (pCO2) and aragonite saturation state resulting in high daytime aragonite saturation state levels when calcification rates were at their peak. However, the NEC and NP diel cycles can become decoupled for short periods of time (several hours) without affecting calcification rates. On a net daily basis, net ecosystem production (NEP) of the barrier reef was found to be sometimes net photosynthetic and sometimes net respiring and ranged from -378 to 80 mmol m-2 d-1 when calculated using simple box models. Daily NEC of the barrier reef was positive (net calcification) for all deployments and ranged from 174 to 331 mmol CaCO3 m-2 d-1. Daily NEC was strongly negatively correlated with average daily pCO2 (R2 = 0.76) which ranged from 431 to 622 µatm. Daily NEC of the Kaneohe Bay barrier reef is similar to or higher than daily NEC measured on other coral reefs even though aragonite saturation state levels (mean aragonite saturation state = 2.85) are some of the lowest measured in coral reef ecosystems. It appears that while calcification rate and ?arag are correlated within a single coral reef ecosystem, this relationship does not necessarily hold between different coral reef systems. It can be expected that ocean acidification will not affect coral reefs uniformly and that some may be more sensitive to increasing pCO2 levels than others.
Resumo:
This paper explains how the practice of integrating ecosystem-service thinking (i.e., ecological benefits for human beings) and institutions (i.e., organisations, policy rules) is essential for coastal spatial planning. Adopting an integrated perspective on ecosystem services (ESs) both helps understand a wide range of possible services and, at the same time, attune institution to local resource patterns. The objective of this paper is to identify the extent to which ESs are integrated in a specific coastal strategic planning case. A subsequent objective is to understand whether institutions are capable of managing ESs in terms of uncovering institutional strengths and weaknesses that may exist in taking ESs into account in existing institutional practices. These two questions are addressed through the application of a content analysis method and a multi-level analysis framework on formal institutions. Jiaozhou Bay in China is used as an illustrative case. The results show that some ESs have been implicitly acknowledged, but by no means the whole range. This partial ES implementation could result from any of four institutional weaknesses in the strategic plans of Jiaozhou Bay, namely a dominant market oriented interest, fragmented institutional structures for managing ESs, limited ES assessment, and a lack of integrated reflection of the social value of ESs in decision-making. Finally, generalizations of multi-level institutional settings on ES integration, such as an inter-organisational fragmentation and a limited use of ES assessment in operation, are made together with other international case studies. Meanwhile, the comparison highlights the influences of extensive market-oriented incentives and governments' exclusive responsibilities on ES governance in the Chinese context.
Resumo:
Coastal zones with their natural and societal subsystems are exposed to rapid changes and pressures on resources. Scarcity of space and impacts of climate change are prominent drivers of land use and adaptation management today. Necessary modifications to present land use management strategies and schemes influence both the structures of coastal communities and the ecosystems involved. Approaches to identify the impacts and account for (i) the linkages between social references and needs and (ii) ecosystem services in coastal zones have been largely absent. The presented method focuses on improving the inclusion of ecosystem services in planning processes and clarifies the linkages with social impacts. In this study, fourteen stakeholders in decisionmaking on land use planning in the region of Krummhörn (northwestern Germany, southern North Sea coastal region) conducted a regional participative and informal process for local planning capable to adapt to climate driven changes. It is argued that scientific and practical implications of this integrated assessment focus on multifunctional options and contribute to more sustainable practices in future land use planning. The method operationalizes the ecosystem service approach and social impact analysis and demonstrates that social demands and provision of ecosystem services are inherently connected.
Resumo:
Explicit and integrated inclusion of ecosystem services (ESs) and their interrelationships can improve the quality of strategic plans and decision-making processes. However, there is little systematic analysis of how ES interrelationships are framed in policy language, particularly in coastal planning discourse. The objective of this paper is therefore to present a four-step method, based on content analysis, to assess ES interrelationships in coastal strategic planning documents. The method consists of: 1) selecting strategic plans; 2) identifying ESs; 3) identifying drivers, ESs and their effects; and 4) constructing relational diagrams. The four-step method is applied to a case of Jiaozhou Bay in China, demonstrating its capacity of identifying which drivers and ES trade-offs and synergies are formulated in coastal strategic plans. The method is helpful to identify overlooked ES interrelationships, inform temporal and spatial issues, and assess the continuity of plans' attention to interrelationships. The main methodological contributions are discussed by emphasizing its broad scope of drivers and ESs and an explicit distinction among the cause of relationships. The developed method also has the potential of cross-fertilizing other kinds of approaches and facilitating practical planning processes.
Resumo:
There is an increasing need for a comprehensive institutional understanding pertaining to ecosystem services (ESs) in coastal and marine fields. This paper develops a systematic framework to inform coastal and marine governance about the integration of ES concepts. First, as a theoretical basis, we analyze the generic rules that are part of the Institutional Analysis and Development (IAD) framework. Second, by an extensive literature review, we formulate a set of ES-specific rules and develop an evaluative framework for coastal and marine governance. Third, we examine this evaluative framework in a specific action situation, namely coastal strategic planning concerning Qingdao, China. Results from the literature review and the case study reveal that when designing ES-specific rules for coastal and marine governance, there are several socio-spatial and economic aspects that should be taken into account: (1) conceive of stakeholders as ES users, (2) capture the effect of ecological scaling, (3) understand ES interactions and clarify indirect impacts and causalities, (4) account for ES values, and (5) draw on economic choices for use rights to deal with ES issues.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.