991 resultados para short tandem repeats (STR)
Resumo:
The present work describes the development of a fast and robust analytical method for the determination of 53 antibiotic residues, covering various chemical groups and some of their metabolites, in environmental matrices that are considered important sources of antibiotic pollution, namely hospital and urban wastewaters, as well as in river waters. The method is based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UHPLC–QqLIT). For unequivocal identification and confirmation, and in order to fulfill EU guidelines, two selected reaction monitoring (SRM) transitions per compound are monitored (the most intense one is used for quantification and the second one for confirmation). Quantification of target antibiotics is performed by the internal standard approach, using one isotopically labeled compound for each chemical group, in order to correct matrix effects. The main advantages of the method are automation and speed-up of sample preparation, by the reduction of extraction volumes for all matrices, the fast separation of a wide spectrum of antibiotics by using ultra-high-performance liquid chromatography, its sensitivity (limits of detection in the low ng/L range) and selectivity (due to the use of tandem mass spectrometry) The inclusion of β-lactam antibiotics (penicillins and cephalosporins), which are compounds difficult to analyze in multi-residue methods due to their instability in water matrices, and some antibiotics metabolites are other important benefits of the method developed. As part of the validation procedure, the method developed was applied to the analysis of antibiotics residues in hospital, urban influent and effluent wastewaters as well as in river water samples
Resumo:
The effect of intramyocellular lipids (IMCLs) on endurance performance with high skeletal muscle glycogen availability remains unclear. Previous work has shown that a lipid-supplemented high-carbohydrate (CHO) diet increases IMCLs while permitting normal glycogen loading. The aim of this study was to assess the effect of fat supplementation on fat oxidation (Fox) and endurance performance. Twenty-two trained male cyclists performed 2 simulated time trials (TT) in a randomized crossover design. Subjects cycled at ∼53% maximal voluntary external power for 2 h and then followed 1 of 2 diets for 2.5 days: a high-CHO low-fat (HC) diet, consisting of CHO 7.4 g·kg(-1)·day(-1) and fat 0.5 g·kg(-1)·day(-1); or a high-CHO fat-supplemented (HCF) diet, which was a replication of the HC diet with ∼240 g surplus fat (30% saturation) distributed over the last 4 meals of the diet period. On trial morning, fasting blood was sampled and Fox was measured during an incremental exercise; a ∼1-h TT followed. Breath volatile compounds (VOCs) were measured at 3 time points. Mental fatigue, measured as reaction time, was evaluated during the TT. Plasma free fatty acid concentration was 50% lower after the HCF diet (p < 0.0001), and breath acetone was reduced (p < 0.05) "at rest". Fox peaked (∼0.35 g·kg(-1)) at ∼42% peak oxygen consumption, and was not influenced by diet. Performance was not significantly different between the HCF and HC diets (3369 ± 46 s vs 3398 ± 48 s; p = 0.39), nor were reaction times to the attention task and VOCs (p = NS for both). In conclusion, the short-term intake of a lipid supplement in combination with a glycogen-loading diet designed to boost intramyocellular lipids while avoiding fat adaptation did not alter substrate oxidation during exercise or 1-hour cycling performance.
Resumo:
OBJECTIVES: Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS: Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS: In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS: BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.
Short Report: Spinal Cord Stimulation in Thromboangiitis Obliterans and Secondary Raynaud's-Syndrome
Resumo:
Introduction: Spinal cord stimulation (SCS) may be a treatment option in limb ischemia occurring as a result of Thromboangiitis obliterans (TAO) or secondary Raynaud's-Syndrome (SRS). The impact of SCS on disease progression and micro-perfusion was prospectively evaluated during a follow-up (FU) of 4 years. Report: Under SCS, a significant increase in trans-cutaneous oxygen tension (tcpO2) was observed in TAO and a significant increase in systolic perfusion pressure at plethysmography was observed in SRS. Complete limb preservation was achieved in all patients who had reduced tobacco consumption. Discussion: SCS is an efficient therapeutic tool in TAO and SRS. Patient selection criteria are crucial for success.
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.
Resumo:
CONTEXTE: L'ablation percutanée par cathéter de la fibrillation auriculaire (AC-FA) est une option de traitement pour les patients souffrant de fibrillation auriculaire (FA) symptomatique réfractaire au traitement médicamenteux. L'AC-FA comporte un risque de complications thromboemboliques qui a été réduit par l'utilisation de l'héparine non fractionnée (HNF) intraveineuse durant la procédure. L'administration optimale de l'HNF ainsi que sa cinétique ne sont pas bien établies et nécessitent d'être déterminées avec précision. MÉTHODES ET RÉSULTATS: Cette étude a inclus 102 patients consécutifs atteints de FA symptomatique, réfractaire au traitement médicamenteux, référés pour une AC-FA. L'âge moyen était de 61 ± 10 ans. Après une ponction transseptale de la fosse ovale, une injection intraveineuse de HNF ajustée au poids (100 U / kg) a été administré. Une augmentation significative du temps de coagulation activé (ACT) a été observée passant d'une valeur de base moyenne de 100 ± 27 secondes, à 355 ± 94 secondes à 10 minutes (T10) et à 375 ± 90 secondes à 20 minutes (T20). 24 patients n'ont pas atteint la valeur visée d'ACT > 300 secondes à T10 et plus de la moitié de ce collectif est resté avec les valeurs d'ACT infrathérapeutiques à T20. Ce sous-ensemble de patients avait des caractéristiques cliniques similaires et avait reçu des doses similaires d'HNF, mais s'était plus fréquemment fait prescrire de la vitamine Kl pré-procédurale que le reste de la population de l'étude. CONCLUSION: Au cours d'une intervention standard, l'HNF montre, de manière inattendue, une cinétique d'anticoagulation lente dans une proportion significative des procédures et ceci jusqu'à 20 minutes après l'administration. Ces résultats soutiennent l'importance d'une administration d'HNF avant la ponction transseptale ou tout cathétérisme gauche avec des mesures précoces et répétées d'ACT afin d'identifier les patients avec une cinétique retardée. Ils sont en ligne avec les directives récentes proposant d'effectuer l'AC-FA sous anticoagulation thérapeutique.
Resumo:
Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.