958 resultados para seed viability
Resumo:
The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA), Sealapex, and a combination of Sealapex and MTA (Sealapex Plus) on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.
Resumo:
This research aimed to standardize the tetrazolium test for evaluation of viability of Copaifera langsdorffii Desf. and Schizolobium parahyba Vell. Blake seeds. It evaluated the following methodologies: seeds scarificated mechanically and soaked up by 24 and 48 hours, with posterior seed coat removal and immersed in tetrazolium solution at 0.075; 0.10 and 0.20% for 2, 3 and 4 hours, 35 °C, the dark one. The evaluated methodologies that had been efficient in the attainment of satisfactory coloration, allowing the differentiation of tissues, and in the evaluation of the physiological quality of the seeds when compared with the germination test, had been: for the species Copaifera langsdorffii, seeds scarificated and soaked up by 24 hours, 35 °C, with posterior seed coat removal, submitted to the tetrazolium solution 0.20% for 4 hours, 35 °C, in the dark one, and for the species guapuruvu, seeds scarificated and soaked up by 48 hours, 35 °C, with posterior seed coat removal, submitted to the tetrazolium solution 0.10% for 4 hours, 35 °C, in the dark one.
Resumo:
In tropical conditions such as Brazil, depending on the local altitude, potatoes can be planted and harvested in every month of the year successively, which favors pest and disease incidence, especially aphids transmission viruses. Therefore, obtaining good yield depends on constant pest and disease control and quality potato seed acquisition. One of the main strategies to increase a healthier seed potato multiplication rate and production is the use of hydroponic systems, with or without substrates, in channels, pots or boxes. In 2005 and 2008, researches investigated several hydroponic systems with and without the use of substrates. In the hydroponic systems without substrate, the aeroponic system resulted in the highest multiplication rate, with 47 tubers plant-1 compared to NFT and DFT, 35 and 37 tubers plant-1, respectively. With the use of substrates, the pot system obtained better results, reaching 12 tubers plant-1, followed by the capillary system and boxes, with 8 and 7 tubers plant-1, respectively. Potato seed production was influenced by hydroponics systems. Among hydroponic systems with substrate, the pots were shown as the best option. However, higher yields were obtained in the hydroponics systems without substrate, with the aeroponic system that provided the best results.
Resumo:
The adhesion of Candida albicans to surfaces is the prerequisite for occurrence of denture stomatitis, a common disease diagnosed among denture wearers. A routine of denture cleansing is essential to prevent biofilm formation and the onset of this infection. The aim of this study was to investigate the effectiveness of combining brushing and cleansing agents in killing C. albicans biofilm. Disks of acrylic resin were made, sterilized, and inoculated with C. albicans (107 cfu/mL). After incubation (37°C/48 h), specimens were randomly assigned to 10 experimental groups (n=9): 5 subjected to brushing with distilled water or cleansing agents - dentifrice slurry, 2% chlorhexidine gluconate (CHX), 1% sodium hypochlorite (NaOCl), and Polident fresh cleanse® (combined method) - and 4 exposed to the cleansing agents without brushing (immersion). Non-cleansed specimens were used as positive controls. The viability of cells was evaluated by XTT reduction method. Results were analyzed by Mann-Whitney and Kruskal-Wallis tests (α=0.05). The combined method was significantly more effective (p<0.0001) in reducing biofilm viability than the immersion. Brushing with CHX and NaOCl resulted in 100% removal of the biofilm. Immersion in the agents reduced significantly (p<0.0001) the biofilm viability, with CHX being the most effective (p<0.0001). The use of the combined method of brushing with cleansing agents is an effective method to reduce C. albicans biofilm, being CHX and NaOCl the most effective solutions.
Resumo:
Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.
Resumo:
The effectiveness of seed dispersal by vertebrates has been analysed by examining both quantitative and qualitative components (Jordano & Schupp 2000, Schupp et al. 2010). While the quantitative component is relatively easily assessed in the field (e.g. visitation rate, number of fruits eaten per visit), the qualitative component (e.g. fate of dispersed seeds, seed treatment in the digestive system of the disperser) is rarely studied under natural conditions, because it is difficult to measure the effects on seeds once ingested by the dispersers (Cortes et al. 2009). © Cambridge University Press 2012.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
Cooling of equine semen obtained from some stallions results in lower seminal quality and viability when the seminal plasma (SP) is present. The objective of this study was to evaluate the effect of the removal of SP using a Sperm Filter on the viability of cooled stallion semen. For this purpose, 31 stallions were used. Their ejaculates were divided into three groups: CN, semen was diluted with an extender; FLT, SP was removed by filtration; and CT, SP was removed by centrifugation and cooled to 15°C for 24 hours. Sperm kinetics and plasma membrane integrity were evaluated immediately after collection (T0) and after 24 hours of refrigeration (T1). No difference (P > .05) was noted at T1 for total sperm motility (TM), progressive sperm motility, or plasma membrane integrity when semen samples from all the stallions were analyzed. However, when samples from stallions termed bad coolers were analyzed (TM = <30% at T1), a difference was observed in TM and progressive sperm motility for CN compared with FLT and CT at T1. Sperm recovery was greater when SP was removed using the filter (FLT) to that when the SP was removed by centrifugation (CN) (89% vs. 81%). Thus, we concluded that filtering with a Sperm Filter is an efficient and practical method for removal of SP from stallion ejaculates, with lower sperm loss than centrifugation. We also found that the presence of SP reduces the quality and viability of cooled semen from stallions whose semen is sensitive to the process of refrigeration. © 2013 Elsevier Inc.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The present work aimed to compare two staining methods for pollen viability evaluation in sugarcane. Pollen from four sugarcane genotypes were collected at three different times (6.00, 8.00 and 9.00 a.m.) and tested for viability using two staining methods (iodine and lactophenol blue). Three anthers, of each genotype were crushed in a glass slide with a drop of the respective stain (iodine 0.1 N and lactophenol blue). The percentage of pollen viability was obtained with an optic microscope (250×) and compared with the pollen germination at culture media where one raquis of each genotype was gentle shaken in a petridish. Three replicates (petri dishes) was performed for each genotype which were maintained at the temperature of 25 °C and air humidity around 95 % for 30 min. The factors (staining methods, genotypes and times) and their interactions were evaluated by the analysis of variance, F test (P < 0.01) and the means compared by the t test (P < 0.05). The lactophenol blue staining was more sensible than the iodine staining method to detect the decrease of pollen viability which occurs naturally in sugarcane. The iodine staining method was more stable and easier than lactophenol to perform the inflorescence classification at any evaluated time (6.00, 8.00 and 9.00 a. m.). Both staining methods overestimated the viability obtained by the germination at culture media when performed at 6.00 a.m. © 2012 Society for Sugar Research & Promotion.
Resumo:
The effect of seed addition on the microstructure and non-ohmic properties of the SnO2 + 1%CoO + 0.05%Nb2O5 ceramic-based system was analyzed. Two classes of seeds were prepared: 99% SnO2 + 1%CuO and 99% SnO2 + 1%CoO (mol%); both classes were added to the ceramic-based system in the amount of 1%, 5%, and 10%. The two systems containing 1% of seeds resulted in a larger grain size and a lower breakdown voltage. The addition of 1% copper seeds produces a breakdown voltage (V b) of ∼ 37 V and a leakage current (fic) of 29 μA. On the other hand, the addition of 1% cobalt seeds produced a breakdown voltage of 57 V and a leakage current of 70 μA. Both systems are of great technological interest for low voltage varistor applications, by means of appropriate strategies to reduce the leakage current. Using larger amounts of seeds was not effective since the values of breakdown voltage in both cases are close to a system without seeds. To our knowledge, there are no reports in the literature regarding the use of seeds in the SnO2 system for low voltage applications. A potential barrier model which illustrates the formation of oxygen species (O′2(ads), O′ads, and O″ads) at the expense of clusters near the interface between grains is proposed. © 2012 The American Ceramic Society.
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Resumo:
Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. © 2013 Bueno et al.