977 resultados para seasonal climate prediction
The G-77, BASIC, and global climate governance: a new era in multilateral environmental negotiations
Resumo:
Abstract This article discusses the role of China, Russia, India and Brazil in the climate regime. It describes the trajectory of their emissions, of their domestic policies and of their international commitments, and argues that, despite their responsibility in causing the problem, they have been conservative forces in the climate regime.
Resumo:
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under mechanical solicitations. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has been scarcely addressed. Fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds
Resumo:
In order to select superior hybrids for the concentration of favorable alleles for resistance to papaya black spot, powdery mildew and phoma spot, 67 hybrids were evaluated in two seasons, in 2007, in a randomized block design with two replications. Genetic gains were estimated from the selection indices of Smith & Hazel, Pesek & Baker, Williams, Mulamba & Mock, with selection intensity of 22.39%, corresponding to 15 hybrids. The index of Mulamba & Mock showed gains more suitable for the five traits assessed when it was used the criterion of economic weight tentatively assigned. Together, severity of black spot on leaves and on fruits, characteristics considered most relevant to the selection of resistant materials, expressed percentage gain of -44.15%. In addition, there were gains for other characteristics, with negative predicted selective percentage gain. The results showed that the index of Mulamba & Mock is the most efficient procedure for simultaneous selection of papaya hybrid resistant to black spot, powdery mildew and phoma spot.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
ABSTRACTThis paper reports an empirical case study on the interface between microfinance and climate change actions. Climate change, which until recently seemed a luxury for the microfinance sector, now appears to be crucial for its future. For their low adaptive capacity, the millions of microfinance clients worldwide happen to be the most vulnerable to a changing climate. However, such an arena is still blurred from an academic viewpoint, and inexistent among Brazilian academia. Therefore, by investigating Brazil’s largest rural MFI, Agroamigo, we aim at providing an empirical contribution to green microfinance. The main conclusion is that, albeit Agroamigo offers important links to climate change initiatives, it will need to take better account of specific vulnerabilities and risks to protect its portfolio and clients better from climate change impacts.
Resumo:
This article focuses on the results of the final stage of research into the climate strategies of firms in the automotive and pulp-and-paper industries in Brazil, a country that is becoming increasingly important also in terms of climate change issues. In the first stage, the Climate Strategy Model (CSM) was developed to assess whether firms were adopting the necessary practices to assure the successful implementation of climate strategies. In the second, the CSM was applied to firms in the above mentioned industries that were chosen because of their important role in the domestic economy. In the final stage, interviews with executives of these firms were conducted to identify root causes of climate strategy implementation deficiencies and obtain new insights from an international perspective.
Resumo:
Seventy four asthmatic children aged 7 to 11 years were examined along with controls matched by age and sex. Clinical and laboratory investigations preceded a 28-day follow-up where data about morning and evening peak expiratory flow rate (PEF), symptoms and treatment were recorded. The coefficient of variation of PEF was found to be an objective measurement of asthma severity that has statistically significant correlation with both symptoms (r s= .36) and treatment (r s= .60). Moreover, it separates mild and severe asthmatics, as confirmed by statistically significant differences (p= .008 or less) in symptoms, treatment, skin allergy and airways response to exercise. Skin allergy and airways responsiveness to exercise were found to be predictors of both disease and severity. By means of logistic regression analysis it was possible to establish the probabilities for both asthma and severe asthma when children presenting and not presenting these characteristics are compared. One single positive skin test represent a probability of 88% for the development of asthma and a probability of 70% for severe disease. A PEF reduction of 10% after an exercise test implies a probability of 73% for disease and a probability of 64% for severe disease. Increases in these variables imply geometrically increased risks and their presence together have a multiplicative effect in the final risk.