949 resultados para scheelite-type structure
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni- and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.
Resumo:
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.
Resumo:
In this work, the effect of various casting solution salt dopants with similar cations, but different anions: (NaPO3)(6), Na2SO4, Na2CO3, NaCl, and NaF, on the morphology and performance of polyethersulfone ultrafiltration membranes was evaluated. The phase inversion process was used to produce all membranes using an 18% polyethersulfone in n-methylpyrrolidone casting solution and water as the non-solvent. Scanning electron microscopy (SEM) images of the membrane cross-section and surface pores were used to determine the specific anion effects on membrane morphology. The SEM images depicted significant changes to the membrane internal structure and pore size with respect to the type and concentration of the casting solution anion dopant. Membrane permeability, molecular weight cut-off, alginate retention, and susceptibility to fouling were evaluated using ultrapure water dead-end and ultrapure water, aqueous polyethylene glycol, aqueous sodium alginate, and natural surface water cross-flow filtration tests. Among the anions evaluated, hexametaphosphate doped at 1% w/w to the polymer resulted in the membrane with highest dead-end permeability at 490 LMH-bar (2- to 3-fold greater than the control), greatest alginate retention at 96.5%, and lowest susceptibility to fouling. The significant increase in membrane performance indicates that the hexametaphosphate anion has great potential to be used as a membrane casting solution dopant. It was also clearly demonstrated that membrane pore morphological characteristics can be effectively used to predict drinking water treatment performance. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety-and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB1 and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB1-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB1-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB1 and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders. Neuropsychopharmacology (2012) 37, 478-486; doi:10.1038/npp.2011.207; published online 21 September 2011
Resumo:
This paper discusses the influence of fat type in the structure of ice cream, during its production by means of rheo-optical analysis. Fat plays an important part in the ice cream structure formation. It's responsible for the air stabilization, flavor release, texture and melting properties. The objective of this study was to use a rheological method to predict the fat network formation in ice cream with three types of fats (hydrogenated, low trans and palm fat). The three formulations were produced using the same methodology and ratio of ingredients. Rheo-optical measurements were taken before and after the ageing process, and the maximum compression force, overrun and melting profile were calculated in the finished product. The rheological analysis showed a better response from the ageing process from the hydrogenated fat, followed by the low trans fat. The formulation with palm fat showed greater differences between the three, where through the rheological tests a weaker destabilization of the fat globule membrane by the emulsifier was suggested. The overrun, texture measurements and meltdown profile has shown the distinction on the structure formation by the hydrogenated fat from the other fats.
Resumo:
An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.
Resumo:
Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.
Resumo:
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Resumo:
Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutieres syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.
Resumo:
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Resumo:
This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Resumo:
N-4-Phenyl 2-acetylpyridine thiosemicarbazone (H2Ac4Ph; N-(phenyl)-2-(1-(pyridin-2-yl)ethylidene) hydrazinecarbothioamide) and its N-4-ortho-, -meta- and -para-fluorophenyl (H2Ac4oFPh, H2Ac4mFPh, H2Ac4pFPh), N-4-ortho-, -meta- and -para-chlorophenyl (H2Ac4oClPh, H2Ac4mClPh, H2Ac4pClPh), N-4-ortho-, -meta- and -para-iodophenyl (H2Ac4oIPh, H2Ac4mIPh, H2Ac4pIPh) and N-4-ortho-, -meta- and -para-nitrophenyl (H2Ac4oNO(2)Ph, H2Ac4mNO(2)Ph, H2Ac4pNO(2)Ph) derivatives were assayed for their cytotoxicity against human malignant breast (MCF-7) and glioma (T98G and U87) cells. The compounds were highly cytotoxic against the three cell lineages (IC50: MCF-7, 52-0.16 nM; T98G, 140-1.0 nM; U87, 160-1.4 nM). All tested thiosemicarbazones were more cytotoxic than etoposide and did not present any haemolytic activity at up to 10(-5) M. The compounds were able to induce programmed cell death. H2Ac4pClPh partially inhibited tubulin assembly at high concentrations and induced cellular microtubule disorganization. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. H-1 NMR, C-13 NMR {H-1}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables.