993 resultados para saddle velocities
Resumo:
Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
Resumo:
The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel Iherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism. We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (
Resumo:
In recent years, there has been a significant increase in the number of bridges which are being instrumented and monitored on an ongoing basis. This is in part due to the introduction of bridge management systems designed to provide a high level of protection to the public and early warning if the bridge becomes unsafe. This paper investigates a novel alternative; a low-cost method consisting of the use of a vehicle fitted with accelerometers on its axles to monitor the dynamic behaviour of bridges. A simplified half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the damping ratio of the bridge. The method is tested for a range of bridge spans and vehicle velocities using theoretical simulations and the influences of road roughness, initial vibratory condition of the vehicle, signal noise, modelling errors and frequency matching on the accuracy of the results are investigated.
Resumo:
High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s-1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s-1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the muram code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s-1 was found in the simulated G-band images and an average of 1.8 km s-1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ˜4 s between layers of the simulated data set were established and values of ˜29 s observed between G-band and Ca ii K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube.
Resumo:
The International Nusantara Stratification and Transport (INSTANT) program measured currents through multiple Indonesian Seas passages simultaneously over a three-year period (from January 2004 to December 2006). The Indonesian Seas region has presented numerous challenges for numerical modelers - the Indonesian Throughflow (ITF) must pass over shallow sills, into deep basins, and through narrow constrictions on its way from the Pacific to the Indian Ocean. As an important region in the global climate puzzle, a number of models have been used to try and best simulate this throughflow. In an attempt to validate our model, we present a comparison between the transports calculated from our model and those calculated from the INSTANT in situ measurements at five passages within the Indonesian Seas (Labani Channel, Lifamatola Passage, Lombok Strait, Ornbai Strait, and Timor Passage). Our Princeton Ocean Model (POM) based regional Indonesian Seas model was originally developed to analyze the influence of bottom topography on the temperature and salinity distributions in the Indonesian seas region, to disclose the path of the South Pacific Water from the continuation of the New Guinea Coastal Current entering the region of interest up to the Lifamatola Passage, and to assess the role of the pressure head in driving the ITF and in determining its total transport. Previous studies found that this model reasonably represents the general long-term flow (seasons) through this region. The INSTANT transports were compared to the results of this regional model over multiple timescales. Overall trends are somewhat represented but changes on timescales shorter than seasonal (three months) and longer than annual were not considered in our model. Normal velocities through each passage during every season are plotted. Daily volume transports and transport-weighted temperature and salinity are plotted and seasonal averages are tabulated.
Resumo:
Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave packet limit, we derive the transition rates governing the hopping process at a simple avoided level crossing. In this derivation, which gives insight into the physics underlying the hopping process, some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic transition rate ("hopping probability") at avoided crossings; (ii) rescaling of the nuclear velocities to conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The well-known Landau-Zener model is then used for illustration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770280]
Resumo:
We investigate whether pure deflagration models ofChandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E {less-than or approximate} 1.1 × 10 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E ~ 0.5 × 10 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B-V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.
Resumo:
In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here,we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width- luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
Resumo:
We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ∼ 150-200 d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterized by weak or absent [Fe III] emission, pointing at a low ejecta ionization state as a result of high densities. To constrain the ejecta and Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ∼60 d. Models with enough Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much γ -ray trapping.We instead propose a model with ∼1M of Ni and ∼2 M of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 M of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
A window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Resumo:
We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (λ). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of λ =8°^{+13}_{-12} and λ =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot =11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* =90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, ψ, was found to be ψ = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities.
Resumo:
Using piezoresponse force microscopy, we have observed the progressive development of ferroelectric flux-closure domain structures and Landau−Kittel-type domain patterns, in 300 nm thick single-crystal BaTiO3 platelets. As the microstructural development proceeds, the rate of change of the domain configuration is seen to decrease exponentially. Nevertheless, domain wall velocities throughout are commensurate with creep processes in oxide ferroelectrics. Progressive screening of macroscopic destabilizing fields, primarily the surface-related depolarizing field, successfully describes the main features of the observed kinetics. Changes in the separation of domain-wall vertex junctions prompt a consideration that vertex−vertex interactions could be influencing the measured kinetics. However, the expected dynamic signatures associated with direct vertex−vertex interactions are not resolved. If present, our measurements confine the length scale for interaction between vertices to the order of a few hundred nanometers.
Resumo:
The influence of oscillatory versus unidirectional flow on the growth and nitrate-uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate-uptake rates were significantly influenced by water motion and season. Lowest nitrate-uptake rates were observed for velocities <5 cm · s−1 and nitrate-uptake rates increased by 20%–50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate-uptake rates. However, while increased nitrate-uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate-uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field-based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.
Resumo:
This article proposes a closed-loop control scheme based on joint-angle feedback for cable-driven parallel manipulators (CDPMs), which is able to overcome various difficulties resulting from the flexible nature of the driven cables to achieve higher control accuracy. By introducing a unique structure design that accommodates built-in encoders in passive joints, the seven degrees of freedom (7-DOF) CDPM can obtain joint angle values without external sensing devices, and it is used for feedback control together with a proper closed-loop control algorithm. The control algorithm has been derived from the time differential of the kinematic formulation, which relates the joint angular velocities to the time derivative of cable lengths. In addition, the Lyapunov stability theory and Monte Carlo method have been used to mathematically verify the self-feedback control law that has tolerance for parameter errors. With the aid of co-simulation technique, the self-feedback closed-loop control is applied on a 7-DOF CDPM and it shows higher motion accuracy than the one with an open-loop control. The trajectory tracking experiment on the motion control of the 7-DOF CDPM demonstrated a good performance of the self-feedback control method.
Resumo:
Context. Bright points (BPs) are small-scale, magnetic features ubiquitous across the solar surface. Previously, we have observed and noted their properties for quiet Sun regions. Here, we determine the dynamic properties of BPs using simultaneous quiet Sun and active region data.
Aims. The aim of this paper is to compare the properties of BPs in both active and quiet Sun regions and to determine any difference in the dynamics and general properties of BPs as a result of the varying magnetic activity within these two regions.
Methods. High spatial and temporal resolution G-band observations of active region AR11372 were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. Three subfields of varying polarity and magnetic flux density were selected with the aid of magnetograms obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Bright points within these subfields were subsequently tracked and analysed.
Results. It is found that BPs within active regions display attenuated velocity distributions with an average horizontal velocity of ~0.6 km s-1, compared to the quiet region which had an average velocity of 0.9 km s-1. Active region BPs are also ~21% larger than quiet region BPs and have longer average lifetimes (~132 s) than their quiet region counterparts (88 s). No preferential flow directions are observed within the active region subfields. The diffusion index (γ) is estimated at ~1.2 for the three regions.
Conclusions. We confirm that the dynamic properties of BPs arise predominately from convective motions. The presence of stronger field strengths within active regions is the likely reason behind the varying properties observed. We believe that larger amounts of magnetic flux will attenuate BP velocities by a combination of restricting motion within the intergranular lanes and by increasing the number of stagnation points produced by inhibited convection. Larger BPs are found in regions of higher magnetic flux density and we believe that lifetimes increase in active regions as the magnetic flux stabilises the BPs.
Resumo:
Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods