958 resultados para rodent malarial parasites
Resumo:
Three coral reef fish species, Zanclus cornutus, Chaetodon vagabundus and Naso lituratus, were collected in French Polynesia and on the Great Barrier Reef, Queensland. These fish species were each infected by one morphologically similar digenean species in both localities; Schistorchis Zancli Hanson, 1953 was found in Zanclus cornutus. Preptetos laguncula Bray and Cribb, 1996 in Naso lituratus and Neohypocreadium dorsoporum Machida and Uchida, 1987 in Chaetodon vagabundus. In addition, on the Great Barrier Reef P. laguncula was also found in Naso unicornis and N. dorsoporum in Chaetodon ephippium and Chaetodon flavirostris. Morphometric differences between the species from the two sites were only slight. Sequences from the second internal transcribed spacer of the ribosomal DNA of each worm revealed total homology or negligible divergence between samples from hosts caught in French Polynesia and on the Great Barrier Reef. These results show that across more than 6000 km these digeneans are similar in morphology and genotype. Some species of fishes and molluscs a-re considered to have distributions that encompass the entire tropical Indo-West Pacific. These findings suggest that at least some of their parasites have similarly broad distributions. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Adult and preadult Dissonus manteri attached to the gills of Plectropomus leopardus cause significant pathology in the form of large hyperplastic nodules on the afferent (leading), edges of gill filaments. Nodules result from the dual actions of parasite attachment and feeding. The host response is characterized by severe epithelial hyperplasia, supplemented by fibroplasia and inflammation. Parasites attach close to the gill arch near the base of filaments. They have little effect on gill vasculature as the maxillipeds penetrate the filament superficial to the efferent filament artery and do not interfere with the blood vessels of the secondary lamellae. Tissue proliferation is limited to the wide portion of filament 'edge' epithelium in the proximal third and also does not extend to the secondary lamellae. Nodules are most numerous towards the ends of hemibranchs and are generally absent from the central regions. Leading hemibranchs bear significantly more nodules than their trailing counterparts. Of the total number of nodules, 20.5% are located on the pseudobranchs. Distribution patterns are considered to be primarily the result of D. manteri avoiding strong water currents, although this cannot explain the difference between numbers on leading and trailing hemibranchs.
Resumo:
The current prediction or genes in the Plasmodium falciparum genome database relies upon a limited number of specially developed computer algorithms. We have re-annotated the sequence of chromosome 2 of P. falciparum by a computer-assisted manual analysis. which is described here. Of 161 newly predicted introns, we have experimentally confirmed 98. We regard 110 introns from the previously published analyses as probable, we delete 3, change 26 and add 135. We recognise 214 genes in chromosome 2. We have predicted introns in 121 genes. The increased complexity or gene structure on chromosome 2 is likely to be mirrored by the entire genome. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Blood smears from 27 turtles (15 Emydura signata, nine Elseya latisternum, and three Chelodina longicollis) from southeastern Queensland (Australia) were examined for infections by hemoprotozoan parasites between January and June 1999. Infections were found in 26 (96%) of the turtles. Twenty five (93%) were infected with the adeleorin coccidian Haemogregarina clelandi, eight (30%) with the hemosporidian Haemoproteus chelodinae, 11 (41%) with the kinetoplastid flagellate Trypanosoma chelodinae, and eight (30%) with a novel Trypanosoma sp. Despite the high prevalence and intensity of infections, there was no evidence of clinical disease in any of the turtles.
Resumo:
In Australia, fungi associated with larvae of the biological control agent Cactoblastis cactorum may contribute to the control of the exotic weed pricklypear (Opuntia inermis), C, cactorum larvae were assessed for their ability to vector pathogenic fungi into O, inermis by the infestation of larvae with fungal suspensions. Six fungal isolates caused disease after being carried into the host on external surfaces of larvae, and propagules of one isolate (UQ5109) initiated disease after being transferred from the cladode epidermis into the host by larvae feeding on the plant. Scanning electron microscopy revealed extensive hyphal growth on the external surfaces of larvae infested with several of the isolates. Fungi isolated from field-grown O, inermis cladodes were tested for pathogenicity to this plant in an in vivo plant assay. In total, 152 isolates were screened, 22 of which infected the host in pathogenicity tests. Only 1 (UQ5115) infected undamaged host tissue, whereas the remainder required the host to be wounded before infection could proceed. The majority of isolates were only weakly pathogenic, even when inoculated via wounds, suggesting that most were either saprophytes or weak parasites. This study demonstrates that it is possible for larvae of C, cactorum to transmit fungal pathogens into O, inermis tissue and it has provided a sound basis for future field work to determine the contribution that fungi make to the control of O. inermis, (C) 2001 Academic Press.
Resumo:
Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections.
Resumo:
Cleaning behavior is a popular example of non-kin cooperation. However, quantitative support for this is generally sparse and the alternative, that cleaners are parasitic: has also been proposed. Although the behaviour involves some of the most complex and highly developed interspecific communication signals known, the proximate causal factors for why clients Seek cleaners are controversial. However, this information is essential to understanding the evolution of cleaning. I tested whether clients seek cleaners in response to parasite infection or whether clients seek cleaners for tactile stimulation regardless of parasite load. Parasite loads oil client fish were manipulated and clients exposed to cleaner fish and control fish hehind glass. I found that parasitized client fish spent more time than unparasitized fish next to a cleaner fish. In addition; parasitized clients spent more rime next to cleaners than next to control fish whereas unparasitized fish were not attracted to cleaners. This study shows, I believe for the first time, which is somewhat surprising, that parasite infection alone causes clients to seek cleaning by cleaners and provides insight into how this behaviour evolved.
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.
Resumo:
Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.
Resumo:
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Resumo:
The interrelationship between myofibroblasts and fibrogenic growth factors in the pathogenesis of renal fibrosis is poorly defined. A temporal and spatial analysis of myofibroblasts, their proliferation and death, and presence of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor-B (PDGF-B) was carried out in an established rodent model in which chronic renal scarring and fibrosis occurs after healed renal papillary necrosis (RPN), similar to that seen with analgesic nephropathy. Treated and control groups (N = 6 and 4, respectively) were compared at 2, 4, 8 and 12 weeks. A positive relationship was found between presence of tubulo-interstitial myofibroblasts and development of fibrosis. Apoptotic myofibroblasts were identified in the interstitium and their incidence peaked 2 weeks after treatment. Levels of interstitial cell apoptosis and fibrosis were negatively correlated over time (r = -0.57, p < 0.01 ), suggesting that as apoptosis progressively failed to limit myofibroblast numbers, fibrosis increased. In comparison with the diminishing apoptosis in the interstitium, the tubular epithelium had progressively increasing levels of apoptosis over time, indicative of developing atrophy of nephrons. TGF-beta1 protein expression had a close spatial and temporal association with fibrosis and myofibroblasts, whilst PDGF-B appeared to have a closer link with populations of other chronic inflammatory cells such as infiltrating lymphocytes. Peritubular myofibroblasts were often seen near apoptotic cells in the tubular epithelium, suggestive of a paracrine toxic effect of factor/s secreted by the myofibroblasts. In vitro , TGF-beta1 was found to be toxic to renal tubular epithelial cells. These findings suggest an interaction between myofibroblasts, their deletion by apoptosis, and the presence of the fibrogenic growth factor TGF-beta1 in renal fibrosis, whereby apoptotic deletion of myofibroblasts could act as a controlling factor in progression of fibrosis.
Resumo:
How can cooperation persist if, for one partner, cheating is more profitable than cooperation in each round, while the other partner has no option to cheat? Our laboratory experiments suggest that such a situation exists between the cleaner fish Labroides dimidiatus and its nonpredatory client reef fish species, which actively seek cleaners to have their ectoparasites removed. Clients Ctenochaetus striatus regularly jolted in response to cleaner mouth contact, and these jolts were not linked to the removal of parasites. In addition, cleaners did not search for parasites but fed on mucus when exposed to anaesthetized clients, which could not control the cleaners' behaviour. Field data showed that clients often terminated an interaction immediately after a jolt. Client species with access to only one cleaning station, owing to their small territories or home ranges, terminated interactions mainly by chasing cleaners while clients with access to two or more cleaning stations mainly swam away. Thus, the chasing of cleaners appeared to be a form of punishment, imposing costs on the cleaner at the client's (momentary) expense. Chasing yields future benefits, as jolts were on average less frequent during interactions between cleaners and individuals that had terminated their previous interaction by aggressive chasing. 2002 The Association for the Study of Animal Behaviour.
Resumo:
To determine if cleaners affect 'temporary' parasitic corallanid isopods (Argathona macronema) on fish, we used caged fish Hemigymnus meldpterus (Labridae) on 5 patch reefs on Lizard Island, Great Barrier Reef, and removed all cleaner fish Labroides dimidiatus (Labridae) from 3 of the reefs, In a short-term experiment, fish were sampled after 12 or 24 h, at dawn and sunset respectively, and in a long-term experiment they were sampled after 12 d at sunset. Isopod prevalence, abundance and size were measured. In the short-term experiment, on reefs without cleaners the prevalence of A. macronema was higher after 24 h than after 12 h while on reefs with cleaners, prevalence was low at all times, Although the abundance of A, macronema did not vary after 12 and 24 h, when combined over the 24 h, the effect of cleaners was significant with only 2 % of all the A. macronema found on reefs with cleaners. Cleaners had no effect on the size frequency distribution of A. macronema in the short-term experiment, most likely because fish had so few isopods on reef with cleaners. In the longer-term experiment, the effects of cleaners on isopod prevalence and abundance were less clear. Their effect on isopod size was, however, significant with smaller parasites on reefs without cleaners. The reduction of isopod prevalence and abundance by cleaner fish over a period of hours may explain why these A, macronema are rare on wild fish. Our findings support the idea that cleaning is beneficial to clients and has important implications for the control of parasites of fish farmed in cages,
Resumo:
Geographical variation in the outcome of interspecific interactions has a range of proximate ecological causes. For instance, cleaning interactions between coral reef fishes can result in benefits for both the cleaner and its clients. However, because both parties can cheat and because the rewards of cheating may depend on the local abundance of ectoparasites on clients, the interaction might range from exploitative to mutualistic. In a comparative analysis of behavioural measures of the association between the cleaner fish Labroides dimidiatus and all its client species, we compared cleaning interactions between two sites on the Great Barrier Reef that differ with respect to mean ectoparasite abundance. At Heron Island, where client fish consistently harbour fewer ectoparasites, client species that tended to pose for cleaners were more likely to receive feeding bites by cleaners than client species that did not pose for cleaners. This was not the case at Lizard Island, where ectoparasites are significantly more abundant. Client fish generally spent more time posing for cleaners at Lizard Island than their conspecifics at Heron Island. However, fish at Heron Island were inspected longer on average by cleaners than conspecifics at Lizard Island, and they incurred more bites and swipes at their sides per unit time from cleaners. These and other differences between the two sites suggest that the local availability of ectoparasites as a food source for cleaners may determine whether clients will seek cleaning, and whether cleaners will feed on parasites or attempt to feed on client mucus. The results suggest that cleaning symbiosis is a mosaic of different outcomes driven by geographical differences in the benefits for both participants.
Resumo:
Recent evidence suggests that cleaner fish Labroides dimidiatus effectively control parasite densities on client reef fish that actively visit them to have parasites and dead or infected tissue removed. These findings support the hypothesis that clients benefit from cleaning, However, they do not show how cleaners reduce the parasite load of their clients. Cleaners could selectively feed on parasites or parasite removal could be a side product of cleaners foraging indifferently on the client surface, resulting in the removal of healthy mucus and scales also. To investigate cleaner fish foraging behaviour, we infected individuals of the surgeon fish Ctenochaetus striatus, with parasitic monogeneans on one body side, while the other body side was parasite free. We then allowed these clients to interact with L, dimidiatus. We found that the duration of interactions depended on parasite load, and that cleaners spent both more time and took more bites per time unit on the infected than on the uninfected side, Our data thus support the idea that parasite abundance determines food patch quality for cleaners. The overall outcome of cleaning interactions is thus likely to benefit the clients.