924 resultados para retinoic acid inducible protein I


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical modifications were used to identify some of the functionally important amino acid residues of the potato plant uncoupling protein (StUCP). The proton-dependent swelling of potato mitochondria in K+-acetate in the presence of linoleic acid and valinomycin was inhibited by mersalyl (Ki = 5 µM) and other hydrophilic SH reagents such as Thiolyte MB, iodoacetate and 5,5'-dithio-bis-(2-nitrobenzoate), but not by hydrophobic N-ethylmaleimide. This pattern of inhibition by SH reagents was similar to that of brown adipose tissue uncoupling protein (UCP1). As with UCP1, the arginine reagent 2,3-butadione, but not N-ethylmaleimide or other hydrophobic SH reagents, prevented the inhibition of StUCP-mediated transport by ATP in isolated potato mitochondria or with reconstituted StUCP. The results indicate that the most reactive amino acid residues in UCP1 and StUCP are similar, with the exception of N-ethylmaleimide-reactive cysteines in the purine nucleotide-binding site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata) genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/µg of protein) of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Thr(118)Met substitution in the peripheral myelin protein 22 (PMP22) gene has been detected in a number of families with demyelinating Charcot-Marie-Tooth (CMT1) neuropathy or with the hereditary neuropathy with liability to pressure palsy, but in none of them has it consistently segregated with the peripheral neuropathy. We describe here a CMT1 family (a 63-year-old man, his brother and his niece) in which two mutations on different chromosomes were found in the PMP22 gene, the 17p duplication, detected by fluorescent semiquantitative polymerase chain reaction (PCR) of microsatellite markers localized within the duplicated region on chromosome 17p11.2-p12, and the Thr(118)Met substitution, detected by direct sequencing the four coding exons of the PMP22 gene. A genotype/phenotype correlation study showed that the neuropathy segregates with the duplication and that the amino acid substitution does not seem to modify the clinical characteristics or the severity of the peripheral neuropathy. We did not find any evidence to characterize this substitution as a polymorphism in the population studied and we propose that the high frequency reported for this point mutation in the literature suggests that the Thr(118)Met substitution may be a hotspot for mutations in the PMP22 gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stimulation by a number of conditions, including infection, cytokines, mechanical injury, and hypoxia, can upregulate inducible nitric oxide synthase (iNOS) in hepatocytes. We observed that exposure to hypergravity significantly upregulated the transcription of the hepatic iNOS gene. The aim of this study was to confirm our preliminary data, and to further investigate the distribution of the iNOS protein in the livers of mice exposed to hypergravity. ICR mice were exposed to +3 Gz for 1 h. We investigated the time course of change in the iNOS expression. Hepatic iNOS mRNA expression progressively increased in centrifuged mice from 0 to 12 h, and then decreased rapidly by 18 h. iNOS mRNA levels in the livers of centrifuged mice was significantly higher at 3, 6, and 12 h than in uncentrifuged control mice. The pattern of iNOS protein expression paralleled that of the mRNA expression. At 0 and 1 h, weak cytoplasmic iNOS immunoreactivity was found in some hepatocytes surrounding terminal hepatic venules. It was noted that at 6 h there was an increase in the number of perivenular hepatocytes with moderate to strong cytoplasmic immunoreactivity. The number of iNOS-positive hepatocytes was maximally increased at 12 h. The majority of positively stained cells showed a strong intensity of iNOS expression. The expression levels of iNOS mRNA and protein were significantly increased in the livers of mice exposed to hypergravity. These results suggest that exposure to hypergravity significantly upregulates iNOS at both transcriptional and translational levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca2+]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca2+]i. Pre-incubation with Resv significantly reduced the change in [Ca2+]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca2+]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The germ fraction with pericarp (bran) is generated in the industrial processing of corn kernel, and it is used for oil extraction and animal feed. This study evaluated the nutritional and protein quality of this fraction in relation to whole corn. The proximate composition, mineral contents, and amino acid profile of the germ fraction with pericarp and of whole corn were determined. A 4-week experiment was conducted using 36 weanling male Wistar rats, and three 10%-protein diets (reference, germ with 15% lipids and casein with 15% lipids), two 6%-protein diets (whole corn and casein), and a protein-free diet were prepared. The germ showed higher contents of proteins, lipids, dietary fiber (27.8 g.100 g-1), ash, minerals (Fe and Zn- approximately 5 mg.100 g-1), and lysine (57.2 mg.g-1 protein) than those of corn. The germ presented good quality protein (Relative Protein Efficiency Ratio-RPER = 80%; Protein Digestibility-Corrected Amino Acid Score-PDCAAS = 86%), higher than that of corn (RPER = 49%; PDCAAS = 60%). The corn germ fraction with pericarp is rich in dietary fiber, and it is a source of good quality protein as well as of iron and zinc, and its use as nutritive raw material is indicated in food products for human consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phaseolus lunatus protein concentrates and the proteases Alcalase(R) and Pepsin-Pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Protein concentrate obtained from germinated and ungerminated seeds flour was hydrolyzed with Alcalase(R) at enzyme/substrate ratio (E/S) 1/10 and during 0.5 and 2.0 h, respectively. On the other hand, protein concentrate obtained from ungerminated (E/S: 1/10) and germinated (E/S: 1/50) seeds flour was sequentially hydrolyzed with Pepsin-Pancreatin during 1.0 and 3.0 h, respectively. Peptide fractions with ACE inhibitory activity in a range of 0.9 to 3.8 µg/mL were obtained by G-50 gel filtration chromatography and high- performance liquid chromatography C18 reverse phase chromatography. The observed amino acid composition suggests a substantial contribution of hydrophobic residues to the peptides’ inhibitory potency, which potentially acts via blocking of angiotensin II production. These results show that P. lunatus seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with Alcalase(R) and Pepsin-Pancreatin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presence of surface glycoprotein in Piptocephalis virginiana that recognizes the host glycoproteins band c, reported earlier from our laboratory, was detected by immunofluorescence microscopy. Germinated spores of P. virginiana treated with Mortierella pusilla cell wall protein extract, primary antibodies prepared against glycoproteins band c and FITC-goat anti-rabbit IgG conjugate showed fluorescence. This indicated that on the surfaces of the biotrophic mycoparasite P. virginiana , there might be a complementary molecule which recognizes the glycoproteins band c from M. pusilla. Immunobinding analysis identified a glycoprotein of Mr 100 kDa from the mycoparasite which binds with the host glycoproteins band c, separately as well as collectively. Purification of this glycoprotein was achieved by (i) 60% ammonium sulfate precipitation, (ii) followed by heat treatment, and (iii) Sephadex G-IOO gel filtration. The glycoprotein was isolated by preparative polyacrylamide gel electrophoresis by cutting and elution. The purity of the protein ·was ascertained by SDS-PAGE and Western blot analysis. Positive reaction to periodic acid-Schiff reagent revealed the glycoprotein nature of this 100 kDa protein. Mannose was identified as a major sugar component of this glycoprotein by using a BoehringerMannheim Glycan Differentiation Kit. Electrophoretically purified glycoprotein was used to raIse polyclonal antibody in rabbit. The specificity of the antibody was determined by dot-immunobinding test and western-blot analysis. Immunofluorescence mIcroscopy revealed surface localization of the protein on the germ tube of Piptocephalis virginiana. Fluorescence was also observed at the surfaceJ of the germinated spores and hyphae of the host, M. pusilla after treatment with complementary protein from P. virginiana, primary antibody prepared against the complementary protein and FITC-goat anti-rabbit IgG conjugate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The a-tocopherol transfer protein (a-TTP) is responsible for the retention of the atocopherol form of vitamin E in living organisms. The detailed ligand transfer mechanism by a-TTP is still yet to be fully elucidated. To date, studies show that a-TTP transfers a-tocopherol from late endosomes in liver cells to the plasma membrane where it is repackaged into very low density lipoprotein (VLDL) and released into the circulation. Late endosomes have been shown to contain a lipid known as lysobisphosphatidic acid (LBP A) that is unique to this cellular compartment. LBPA plays a role in intracellular trafficking and controlling membrane curvature. Taking these observations into account plus the fact that certain proteins are recruited to membranes based on membrane curvature, the specific aim of this project was to examine the effect of LBP A on a-TTP binding to lipid membranes. To achieve this objective, dual polarization interferometry (DPI) and a vesicle binding assay were employed. Whilst DPI allows protein binding affinity to be measured on a flat lipid surface, the vesicle binding assay determines protein binding affinity to lipid vesicles mimicking curved membranes. DPI analysis revealed that the amount of a-TTP bound to lipid membranes is higher when LBPA is present. Using the vesicle binding assay, a similar result was seen where a greater amount of protein is bound to large unilamellar vesicles (LUV s) containing LBP A. However, the effect of LBP A was attenuated when small unilamellar vesicles (SUVs) were replaced with LUVs. The outcome of this project suggests that aTTP binding to membranes is influenced by membrane curvature, which in turn is induced by the presence of LBP A.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.