857 resultados para resting
Resumo:
Several studies have demonstrated that one exercise session (ES) on a cycloergometer or ergometric treadmill causes a reduction in blood pressure (BP). However, there are few similar studies on walking, which is the exercise modality most available to the elderly. We investigated the immediate and 24-h effects of walking on BP in independent, community-living elderly individuals. Volunteers participated in a single ES and resting control session (CS). Before and after each session, BP was measured by auscultatory and oscillometric methods. After each session, 24-h ambulatory blood pressure monitoring was conducted. An accelerometer was installed 48 h before the sessions and left in place for 5 days. The mean volunteer age was 67.7 +/- 3.5 years; 11 were hypertensive patients under treatment, and 12 were normotensive. In the total sample, there were immediate 14mm Hg and 12 mm Hg reductions in systolic BP (SBP) after the ES according to the auscultatory and oscillometric methods, respectively. Diastolic BP (DBP) was reduced by 4 mm Hg after the ES according to both methods. SBP during wakefulness and sleep and DBP during wakefulness were lower after the ES than after the CS (P<0.01), when wakefulness and sleep were determined individually (variable-time pattern) using data from the activity monitors and provided by the volunteers. The variable-time pattern was more effective in detecting reductions in BP than the fixed-time pattern. Hypertension Research (2012) 35, 457-462; doi: 10.1038/hr.2011.227; published online 9 February 2012
Resumo:
Objective: Human immunodeficiency virus type 1 (HIV)-associated lipodystrophy syndrome compromises body composition and produces metabolic alterations, such as dyslipidemia and insulin resistance. This study aims to determine whether energy expenditure and substrate oxidation are altered due to human HIV-associated lipodystrophy syndrome. Methods: We compared energy expenditure and substrate oxidation in 10 HIV-infected men with lipodystrophy syndrome (HIV+LIPO+), 22 HIV-infected men without lipodystrophy syndrome (HIV+LIPO-), and 12 healthy controls. Energy expenditure and substrate oxidation were assessed by indirect calorimetry, and body composition was assessed by dual-energy X-ray absorptiometry. The substrate oxidation assessments were performed during fasting and 30 min after eucaloric breakfast consumption (300 kcal). Results: The resting energy expenditure adjusted for lean body mass was significantly higher in the HIV+LIPO+ group than in the healthy controls (P = 0.02). HIV-infected patients had increased carbohydrate oxidation and lower lipid oxidation when compared to the control group (P < 0.05) during fasting conditions. After the consumption of a eucaloric breakfast, there was a significant increase in carbohydrate oxidation only in the HIV+LIPO- and control groups (P < 0.05), but there was no increase in the HIV+LIPO+ group. Conclusion: Hypermetabolism and alteration in substrate oxidation were observed in the HIV+LIPO+ group. (C)2012 Elsevier Inc. All rights reserved.
Resumo:
Moraes DJ, Dias MB, Cavalcanti-Kwiatkoski R, Machado BH, Zoccal DB. Contribution of retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J Neurophysiol 108: 882-890, 2012. First published May 16, 2012; doi:10.1152/jn.00193.2012.-Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60-80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.
Resumo:
Aim: We evaluated the effectiveness of high-frequency transcutaneous electrical nerve stimulation (TENS) as a pain relief resource for primiparous puerpere who had experienced natural childbirth with an episiotomy. Methods: A controlled, randomized clinical study was conducted in a Brazilian maternity ward. Forty puerpere were randomly divided into two groups: TENS high frequency and a no treatment control group. Post-episiotomy pain was assessed in the resting and sitting positions and during ambulation. An 11-point numeric rating scale was performed in three separate evaluations (at the beginning of the study, after 60 min and after 120 min). The McGill pain questionnaire was employed at the beginning and 60 min later. TENS with 100 Hz frequency and 75 mu s pulse for 60 min was employed without causing any pain. Four electrodes ware placed in parallel near the episiotomy site, in the area of the pudendal and genitofemoral nerves. Results: An 11-point numeric rating scale and McGill pain questionnaire showed a significant statistical difference in pain reduction in the TENS group, while the control group showed no alteration in the level of discomfort. Hence, high-frequency TENS treatment significantly reduced pain intensity immediately after its use and 60 min later. Conclusion: TENS is a safe and viable non-pharmacological analgesic resource to be employed for pain relief post-episiotomy. The routine use of TENS post-episiotomy is recommended.
Resumo:
Purpose: To evaluate the growth of children after repair of Tetralogy of Fallot, as well as the influence of residual lesions and socio-economic status. Methods: A total of 17 children, including 10 boys with a median age of 16 months at surgery, were enrolled in a retrospective cohort, in a tertiary care university hospital. Anthropometric (as z-scores), clinical, nutritional, and social data were collected. Results: Weight-for-age and weight-for-height z-scores decreased pre-operatively and recovered post-operatively in almost all patients, most markedly weight for age. Weight-for-height z-scores improved, but were still lower than birth values in the long term. Long-term height-for-age z-scores were higher than those at birth, surgery, and 3 months post-operatively. Most patients showed catch-up growth for height for age (70%), weight for age (82%), and weight for height (70%). Post-operative residual lesions (76%) influenced weight-for-age z-scores. Despite the fact that most patients (70%) were from low-income families, energy intake was above the estimated requirement for age and gender in all but one patient. There was no influence of socio-economic status on pre- and post-operative growth. Bone age was delayed and long-term-predicted height was within mid-parental height limits in 16 children (93%). Conclusion: Children submitted to Tetralogy of Fallot repair had pre-operative acute growth restriction and showed post-operative catch-up growth for weight and height. Acute growth restriction could still be present in the long term.
Resumo:
Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC), right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA) flow pattern and flow reserve (CFR) are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire) data was obtained in RCA and left anterior descendent coronary artery (LAD) before and after adenosine. Resting RCA phasic pattern (diastolic/systolic) was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV) dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress) more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS) either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS); RCA vs. LAD was 1.35 vs. 2.85 (p < 0.001). It had no significant correlation among any cardiac mechanical or hemodynamic parameter with RCA-CFR or RCA flow pattern. RCA-CFR had no difference compared with LAD (3.38 vs. 3.34, p = NS), as well as in pulmonary hypertension (3.09 vs. 3.10, p = NS) either in RV dysfunction (3.06 vs. 3.22, p = NS) subgroups. Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or hemodynamic parameter with RCA-CFR or RCA phasic flow pattern. RCA flow reserve is still similar to LAD, independently of those right-sided cardiac disturbances.
Resumo:
A transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam is studied. Assuming that the beam is clamped at one extremity, and resting on an elastic bearing at the other extremity, the existence of a unique global solution and decay rates of the energy are obtained by adding just one damping device at the end containing the bearing mechanism.
Resumo:
Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
INTRODUÇÃO: Um dos benefícios promovidos pelo exercício físico parece ser a melhora da modulação do sistema nervoso autônomo sobre o coração. No entanto, o papel da atividade física como um fator determinante da variabilidade da frequência cardíaca (VFC) não está bem estabelecido. Desta forma, o objetivo do estudo foi verificar se há correlação entre a frequência cardíaca de repouso e a carga máxima atingida no teste de esforço físico com os índices de VFC em homens idosos. MÉTODOS: Foram estudados 18 homens idosos com idades entre 60 e 70 anos. Foram feitas as seguintes avaliações: a) teste de esforço máximo em cicloergômetro utilizando-se o protocolo de Balke para avaliação da capacidade aeróbia; b) registro da frequência cardíaca (FC) e dos intervalos R-R durante 15 minutos na condição de repouso em decúbito dorsal. Após a coleta, os dados foram analisados no domínio do tempo, calculando-se o índice RMSSD, e no domínio da frequência, calculando-se os índices de baixa frequência (BF), alta frequência (AF) e razão BF/AF. Para verificar se existe associação entre a carga máxima atingida no teste de esforço e os índices de VFC foi aplicado o teste de correlação de Pearson (p < 0,05). RESULTADOS: Características demográficas, antropométricas, fisiológicas e carga máxima atingida no teste ergométrico: idade = 63 ± 3,0 anos; IMC = 24 ± 2kg/m²; FC = 63 ± 9bpm; PAS = 123 ± 19mmHg; PAD = 83 ± 8mmHg; carga máxima = 152 ± 29 watts. Não houve correlação entre os índices de VFC com os valores de FC de repouso e carga máxima atingida no teste ergométrico (p > 0,05). CONCLUSÃO: Os índices de variabilidade da frequência cardíaca temporal e espectrais estudados não são indicadores do nível de capacidade aeróbia de homens idosos avaliados em cicloergômetro.
Resumo:
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells.
Resumo:
[EN] Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; approximately 60% maximal oxygen consumption (Vo(2 max))] and short repeated high-intensity exercise (5-8 min; approximately 110% Vo(2 max)). In control resting and light exercise (2 h; approximately 25% Vo(2 max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 h of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.
Resumo:
[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.
Resumo:
[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.