945 resultados para rare earth ion
Resumo:
A trivalent neodymium ion (Nd3+) complex Nd(PM)(3)(TP)(2) was synthesized, and its optical properties was studied by introducing Judd-Ofelt theory to calculate the radiative transition rate and the radiative decay time of the F-4(3/2) -> (4)l(J), transitions in this Nd(III) complex. The strong emissions of this complex at near-infrared region were owing to the efficient energy transfer from ligands to center metal ion. The potential application of this complex in NIR electroluminescence was studied by fabricating several devices. The maximum NIR irradiance was obtained as 2.1 mW/m(2) at 16.5 V.
Resumo:
Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy.
Resumo:
Theoretical researches were performed on the CaFe2O4-type binary rare earth oxides AR(2)O(4) (A = Ca, Sr, Ba; R = rare earths) by using chemical bond theory of dielectric description. The chemical bond properties of these crystals were explored, and then the thermal expansion property and compressibility were studied. The theoretical values of linear thermal expansion coefficient (LTEC) and bulk modulus were presented. The calculations revealed that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the rare earths. In the cases of Sc and Y, both the LTEC and bulk modulus values are larger than the lanthanide series. We attribute this to the difference in the electronic configuration between Sc (Y) and lanthanide series. For SrY2O4 and BaY2O4 crystals, the theoretical values of LTEC and bulk modulus agree well with experimental ones.
Resumo:
BACKGROUND: 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP, H(2)A(2)) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec-nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
Polycrystalline powder sample of KSr4(BO3)(3) was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, TM3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)(3) Phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)(3) phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)(3):0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f(0)5d(1) -> F-2((5/2),(7/2)) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose-response of KSr4(BO3)(3):0.002 Ce3+ to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)(3):0.002 Ce3+ was also investigated.
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.
Resumo:
A semiempirical method for the evaluation of the barycenter of energy of 4f(N-1)5d configurations is presented. The environmental factors affecting the barycenter are given to be the bond volume polarization, fractional covalence of the chemical bond between the central ion and the nearest anion, and presented charge of the nearest anion in the chemical bonds. The barycenter energies of 4f(N-1)5d configurations of Eu2+ and Ce3+ are calculated in various crystals, and the results are in good agreement with the experimental values. A relationship is found between the barycenter of energy of the 4f(N-1)5d configuration on Eu2+ method offers the advantage of applicability to a broad class of luminescence materials and initiates a link between macroscopic properties and microscopic structure.
Resumo:
The interaction mechanism between Eu3+ and microperoxidase-II (MP-11) in the aqueous solution was investigated using the UV-vis absorption spectroscopy, cyclic voltammetry and electrospray ionization mass spectrometry. It was found that one Eu3+ ion can coordinate with two carboxyl oxygen of two propionic acid groups of the heme group in the MP-11 molecule, leading the increase in the nonplanarity of the porphyrin ring and exposure degree of Fe(III) in the heme group. Therefore, the reversibility of the electrochemical reaction and the electrocatalytic activity of MP-11 for the reduction of oxygen are increased.
Resumo:
Phase transition of BaNd2Mn2O7 from orthorhombic (space group Fmmm) to tetragonal phase (I4/mmm) was studied by high temperature powder X-ray diffractometry and Rietveld analysis. The transition temperature was identified at 523 K, which is almost the same transition temperature as the compounds with other rare earth ions in this BaLn(2)Mn(2)O(7) family (Ln=Sm and Eu) with Fmmm space group. During the transition an oxygen octahedron of each phase changes a little its form, in which four oxygen atoms perpendicular to C-axis make a rectangle and a square for orthorhombic and tetragonal phases, respectively. Manganese ion is not on the center of the quadrilateral consisting of these four oxygen ions, but a little apart from the center along c-axis in both phases.
Resumo:
In this paper, a new process is proposed to recover rare earths from nitric acid leaching of apatite without interfering with the normal route for fertilizer production using solvent extraction with dimethyl heptyl methyl phosphonate CH3P(O)(OC8H17)(2) (P-350, B). In the present work, the leaching conditions are studied. In selected condition, apatite was dissolved in 20% (v/v) nitric acid solution at 60-70 degrees C while agitating. The most suitable acidity for extraction is 0.4 M HNO3. More than 98% of rare earths in apatite can be recovered using countercurrent extraction process with six stages when phase ratio = 0.5, and defluorination is unnecessary. The influences of phase ratio, stage number, acidity and salting-out agent on extractabilities Of P-350 are studied. The results show that rare earths can be separated with P-350 from Ca, P, Fe and other impurities. Mixed rare earth oxides (REO) of which purity is more than 95% with yield over 98% can be obtained.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP, HA) and di-(2ethylhexyl)-2-ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE (III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A(2).B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change Delta G (-17.06kJmol(-1)), enthalpy change Delta H (-35.08kjmol(-1)) and entropy change Delta S (-60.47JK(-1)mol(-1)) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements.
Resumo:
Kinetics and mechanism of stripping of yttrium(III) previously extracted by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, HA), and 2-ethylhexyl phosphonic acid mono-2-ethylhexl ester (P507, HB) dissolved in heptane have been investigated by constant interfacial-area cell by laminar flow. The corresponding equilibrium stripping equation and equilibrium constant were obtained. The studies of effects of the stirring rate and temperature on the stripping rate show that the stripping regime is dependent on the stripping conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of mixtures of Cyanex 272 and P507 at heptane-water interfaces makes the interface the most probable locale for the chemical reactions. The stripping rate constant is obtained, and the value is compared with that of the system with Cyanex 272 and P507 alone. It is concluded that the stripping ability with the mixtures is easier than that of P507 due to lower the activation energy of the mixtures. The stripping rate equation has also been obtained, and the rate-determining steps are the two-step interfacial chemical reactions as predicted from interfacial reaction models.
Resumo:
Oxyapatite NaY9Si6O26 was prepared by sol-gel method. By choosing the precursors, a single phase compound was obtained. This soft chemical method lowered the reaction temperature by 100degreesC compared with the solid state method. Its morphology was studied by transmission electron microscopy (TEM). Several rare earth ions (Eu3+, Tb3+, Dy3+) and Pb2+ ion were doped in this compound. The high resolution emission spectrum of Eu3+ showed that rare earth ions occupied two yttrium sites. In spite of the charge imbalance of Pb2+ with the cations in this compound, it was found that Pb2+ could emit in UV range and transfer its excitation energy to Dy3+ ion.