941 resultados para rainfall erosivity parameter
Resumo:
Shear-wave splitting can be a useful technique for determining crustal stress fields in volcanic settings and temporal variations associated with activity. Splitting parameters were determined for a subset of local earthquakes recorded from 2000-2010 at Yellowstone. Analysis was automated using an unsupervised cluster analysis technique to determine optimum splitting parameters from 270 analysis windows for each event. Six stations clearly exhibit preferential fast polarization values sub-orthogonal to the direction of minimum horizontal compression. Yellowstone deformation results in a local crustal stress field differing from the regional field dominated by NE-SW extension, and fast directions reflect this difference rotating around the caldera maintaining perpendicularity to the rim. One station exhibits temporal variations concordant with identified periods of caldera subsidence and uplift. From splitting measurements, we calculated a crustal anisotropy of ~17-23% and crack density ~0.12-0.17 possibly resulting from stress-aligned fluid filled microcracks in the upper crust and an active hydrothermal system.
Resumo:
Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, λ-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients are simulated and compared with an earlier-developed BCTRAN-based model. Black start energization cases are also simulated as a means of model evaluation and compared with actual event records. The simulated results using the model developed here are reasonable and more correct than those of the BCTRAN-based model. Simulation accuracy is dependent on the accuracy of the equipment model and its parameters. This work is significant in that it advances existing parameter estimation methods in cases where the available data and measurements are incomplete. The accuracy of EMTP simulation for power systems including three-phase autotransformers is thus enhanced. Theoretical results obtained from this work provide a sound foundation for development of transformer parameter estimation methods using engineering optimization. In addition, it should be possible to refine which information and measurement data are necessary for complete duality-based transformer models. To further refine and develop the models and transformer parameter estimation methods developed here, iterative full-scale laboratory tests using high-voltage and high-power three-phase transformer would be helpful.
Resumo:
The selective catalytic reduction system is a well established technology for NOx emissions control in diesel engines. A one dimensional, single channel selective catalytic reduction (SCR) model was previously developed using Oak Ridge National Laboratory (ORNL) generated reactor data for an iron-zeolite catalyst system. Calibration of this model to fit the experimental reactor data collected at ORNL for a copper-zeolite SCR catalyst is presented. Initially a test protocol was developed in order to investigate the different phenomena responsible for the SCR system response. A SCR model with two distinct types of storage sites was used. The calibration process was started with storage capacity calculations for the catalyst sample. Then the chemical kinetics occurring at each segment of the protocol was investigated. The reactions included in this model were adsorption, desorption, standard SCR, fast SCR, slow SCR, NH3 Oxidation, NO oxidation and N2O formation. The reaction rates were identified for each temperature using a time domain optimization approach. Assuming an Arrhenius form of the reaction rates, activation energies and pre-exponential parameters were fit to the reaction rates. The results indicate that the Arrhenius form is appropriate and the reaction scheme used allows the model to fit to the experimental data and also for use in real world engine studies.
Resumo:
The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Resumo:
Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.
Resumo:
Bisher wurde noch nicht erforscht wie sich die Variation kinematischer Parameter konkret auf den Energiebedarf von Regalbediengeräten auswirkt. Dieser Beitrag untersucht daher die energetischen Folgen bei unterschiedlichen Geschwindigkeiten und Beschleunigungen der Antriebe eines Regalbediengerätes. Veränderte Geschwindigkeiten und Beschleunigungen beeinflussen jedoch auch die Fahr- und Hubzeiten des Regalbediengerätes. Daher wird ebenfalls eine Berechnungsmethode vorgestellt, mit der der optimale Startpunkt des Hubwerkes und die optimale Fahrgeschwindigkeit auf Basis der eingestellten kinematischen Parameter berechnet werden können.
Resumo:
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.