940 resultados para quality function development
Resumo:
Storm Lake, the state's fourth largest natural lake, has been the centerpiece of significant economic development, including a resort, water park, and state marina. While there have been considerable improvements to the lake's water quality through a major on-going lake restoration program and watershed project, the Little Storm Lake area still needs to be addressed. Little Storm Lake is a 190 acre area on the nmihwest side of Storm Lake. The water level in both areas is based on the dam height located on the southeast corner of Storm Lake. Approximately 70% of the water from the watershed flows through Little Storm Lake. Little Storm Lake originally had the ability to remove much of the sediment and nutrients from incoming waters. However, due to degradation, proper wetland function has been compromised. Under normal hydrologic conditions Little Storm Lake has the potential to function as a sediment trap for Storm Lake, but tllis capacity is overwhelmed during high flows. Little Storm Lake is at or near its sediment trapping capacity, which results in higher sediment transport into Storm Lake. Resuspension of sediments due to wind and other in-lake dynamics, such as rough fish, further exacerbate the total turbidity from suspended sediment and results in movement of sediment from Little Storm Lake into Storm Lake. This project includes a fish barrier and water retention structure between Little Storm Lake and Storm Lake and the construction of a pumping station and associated equipment. The project involves periodic dewatering of Little Storm Lake during years of favorable climatological conditions to consolidate the sediments and revegetate the area. Construction of the fish banier would aid restoration efforts by preventing rough fish from destroying the vegetation and would decrease recruitment of rough fish by limiting their spawning area. In the future, if the diminished trapping capacity of Little Storm Lake still results in sediment moving into Storm Lake, a dredging project would be initiated to deepen Little Storm Lake.
Resumo:
Assessment of image quality for digital x-ray mammography systems used in European screening programs relies mainly on contrast-detail CDMAM phantom scoring and requires the acquisition and analysis of many images in order to reduce variability in threshold detectability. Part II of this study proposes an alternative method based on the detectability index (d') calculated for a non-prewhitened model observer with an eye filter (NPWE). The detectability index was calculated from the normalized noise power spectrum and image contrast, both measured from an image of a 5 cm poly(methyl methacrylate) phantom containing a 0.2 mm thick aluminium square, and the pre-sampling modulation transfer function. This was performed as a function of air kerma at the detector for 11 different digital mammography systems. These calculated d' values were compared against threshold gold thickness (T) results measured with the CDMAM test object and against derived theoretical relationships. A simple relationship was found between T and d', as a function of detector air kerma; a linear relationship was found between d' and contrast-to-noise ratio. The values of threshold thickness used to specify acceptable performance in the European Guidelines for 0.10 and 0.25 mm diameter discs were equivalent to threshold calculated detectability indices of 1.05 and 6.30, respectively. The NPWE method is a validated alternative to CDMAM scoring for use in the image quality specification, quality control and optimization of digital x-ray systems for screening mammography.
Resumo:
Healthcare accreditation models generally include indicators related to healthcare employees' perceptions (e.g. satisfaction, career development, and health safety). During the accreditation process, organizations are asked to demonstrate the methods with which assessments are made. However, none of the models provide standardized systems for the assessment of employees. In this study, we analyzed the psychometric properties of an instrument for the assessment of nurses' perceptions as indicators of human capital quality in healthcare organizations. The Human Capital Questionnaire was applied to a sample of 902 nurses in four European countries (Spain, Portugal, Poland, and the UK). Exploratory factor analysis identified six factors: satisfaction with leadership, identification and commitment, satisfaction with participation, staff well-being, career development opportunities, and motivation. The results showed the validity and reliability of the questionnaire, which when applied to healthcare organizations, provide a better understanding of nurses' perceptions, and is a parsimonious instrument for assessment and organizational accreditation. From a practical point of view, improving the quality of human capital, by analyzing nurses and other healthcare employees' perceptions, is related to workforce empowerment.
Resumo:
Bone morphogenetic proteins (Bmps) regulate the expression of the proneural gene Atoh1 and the generation of hair cells in the developing inner ear. The present work explored the role of Inhibitor of Differentiation genes (Id1-3) in this process. The results show that Id genes are expressed in the prosensory domains of the otic vesicle, along with Bmp4 and Bmp7. Those domains exhibit high levels of the phosphorylated form of Bmp-responding R-Smads (P-Smad1,5,8), and of Bmp-dependent Smad transcriptional activity as shown by the BRE-tk-EGFP reporter. Increased Bmp signaling induces the expression of Id1-3 along with the inhibition of Atoh1. Conversely, the Bmp antagonist Noggin or the Bmp-receptor inhibitor Dorsomorphin elicit opposite effects, indicating that Bmp signaling is necessary for Id expression and Atoh1 regulation in the otocyst. The forced expression of Id3 is sufficient to reduce Atoh1 expression and to prevent the expression of hair cell differentiation markers. Together, these results suggest that Ids are part of the machinery that mediates the regulation of hair cell differentiation exerted by Bmps. In agreement with that, during hair cell differentiation Bmp4 expression, P-Smad1,5,8 levels and Id expression are downregulated from hair cells. However, Ids are also downregulated from the supporting cells which contrarily to hair cells exhibit high levels of Bmp4 expression, P-Smad1,5,8, and BRE-tk-EGFP activity, suggesting that in these cells Ids escape from Bmp/Smad signaling. The differential regulation of Ids in time and space may underlie the multiple functions of Bmp signaling during sensory organ development.
Resumo:
The Engineering Research Institute at Iowa State University studied the organization and procedures for highway planning by all levels of government and the coordination among various state agencies and local governments in Iowa. Study information was derived from interviews, questionnaires, and a review of the literature. Representatives from state transportation or highway organizations in all states responded to questionnaires. Additionally, selected upper and intermediate level personnel from highway organizations in seven other states were interviewed and a visit was made to one state transportation department. Within Iowa, employees were interviewed in the Highway Commission, Office for Planning and Programming, Development Commission, Commerce Commission, Conservation Commission, and Highway Patrol. Nearly 600 officials of local governments in Iowa contributed factual data and opinions through questionnaires and interviews. Private citizens and consultants also provided input to the investigation through their responses to questionnaires. Twelve recommendations to improve highway planning in Iowa were formulated as a result of this study.
Resumo:
Benthic macroinvertebrate assemblages do not appear to differ as markedly between coldwater and warmwater streams (in Iowa, at least) as do fish assemblages, and to our knowledge no parallel evaluation of benthic macroinvertebrate communities in coldwater streams has been conducted. What is known is that many taxa are exclusively collected in coldwater environments and are considered “rare” in Iowa from a biogeographical perspective. While the warmwater BMIBI has generally proven to work well as a diagnostic tool for Iowa’s streams, the streams of Iowa’s Paleozoic Plateau tend to group in the “excellent” to “good” qualitative rating categories. The streams of this area tend to be more ecologically intact than other areas of the state; however, there are some artifacts of the current warmwater BMIBI (most specifically metric scoring related to watershed size) that skew IBI values higher. Our objective is to develop a Coldwater Benthic Index (CBI) which will provide a more accurate assessment of streams classified, or potentially classifiable, as coldwater.
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across pavement depth. This has been recognized as resulting in PCC pavement curling and warping since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore significant to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also for better understanding of its relationship to long-term pavement performance. Although several approaches and devices—including linear variable differential transducers (LVDTs), digital indicators, and some profilers—have been proposed for measuring curling and warping, their application in the field is subject to cost, inconvenience, and complexity of operation. This research therefore explores developing an economical and simple device for measuring curling and warping in concrete pavements with accuracy comparable to or better than existing methodologies. Technical requirements were identified to establish assessment criteria for development, and field tests were conducted to modify the device to further enhancement. The finalized device is about 12 inches in height and 18 pounds in weight, and its manufacturing cost is just $320. Detailed development procedures and evaluation results for the new curling and warping measuring device are presented and discussed, with a focus on achieving reliable curling and warping measurements in a cost effective manner.
Resumo:
A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.
Resumo:
INTRODUCTION: Intrauterine Growth Restriction (IUGR) is a multifactorial disease defined by an inability of the fetus to reach its growth potential. IUGR not only increases the risk of neonatal mortality/morbidity, but also the risk of metabolic syndrome during adulthood. Certain placental proteins have been shown to be implicated in IUGR development, such as proteins from the GH/IGF axis and angiogenesis/apoptosis processes. METHODS: Twelve patients with term IUGR pregnancy (birth weight < 10th percentile) and 12 CTRLs were included. mRNA was extracted from the fetal part of the placenta and submitted to a subtraction method (Clontech PCR-Select cDNA Subtraction). RESULTS: One candidate gene identified was the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1). NEAT1 is the core component of a subnuclear structure called paraspeckle. This structure is responsible for the retention of hyperedited mRNAs in the nucleus. Overall, NEAT1 mRNA expression was 4.14 (±1.16)-fold increased in IUGR vs. CTRL placentas (P = 0.009). NEAT1 was exclusively localized in the nuclei of the villous trophoblasts and was expressed in more nuclei and with greater intensity in IUGR placentas than in CTRLs. PSPC1, one of the three main proteins of the paraspeckle, co-localized with NEAT1 in the villous trophoblasts. The expression of NEAT1_2 mRNA, the long isoform of NEAT1, was only modestly increased in IUGR vs. CTRL placentas. DISCUSSION/CONCLUSION: The increase in NEAT1 and its co-localization with PSPC1 suggests an increase in paraspeckles in IUGR villous trophoblasts. This could lead to an increased retention of important mRNAs in villous trophoblasts nuclei. Given that the villous trophoblasts are crucial for the barrier function of the placenta, this could in part explain placental dysfunction in idiopathic IUGR fetuses.
Resumo:
Elevated plasma levels of lipoprotein-associated phospholipase A(2) (Lp-PLA2) activity have been shown to be associated with increased risk of coronary heart disease and an inhibitor of this enzyme is under development for the treatment of that condition. A Val279Phe null allele in this gene, that may influence patient eligibility for treatment, is relatively common in East Asians but has not been observed in Europeans. We investigated the existence and functional effects of low frequency alleles in a Western European population by re-sequencing the exons of PLA2G7 in 2000 samples. In all, 19 non-synonymous single-nucleotide polymorphisms (nsSNPs) were found, 14 in fewer than four subjects (minor allele frequency <0.1%). Lp-PLA2 activity was significantly lower in rare nsSNP carriers compared with non-carriers (167.8±63.2 vs 204.6±41.8, P=0.01) and seven variants had enzyme activities consistent with a null allele. The cumulative frequency of these null alleles was 0.25%, so <1 in 10,000 Europeans would be expected to be homozygous, and thus not potentially benefit from treatment with an Lp-PLA2 inhibitor.
Resumo:
The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry‑field conditions in São Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree‑days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in São Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree‑days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass.
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene α-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.
Resumo:
Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including c-Jun, Notch, Sox-2 and Pax-3, all usually expressed in the immature Schwann cells and suppressed at the onset of myelination. In order to identify new negative regulators of myelination involved in the development of the peripheral nervous system (PNS) we analyzed the data from a previously performed transcriptional analysis of myelinating Schwann cells. Based on its transcriptional expression profile during myelination, Sox4, a member of the Sox gene family, was identified as a potential candidate. Previous studies demonstrated that prolonged Sox4 expression in oligodendrocytes maintains these cells in a premyelinating state, further suggesting its role as a negative regulator of myelination. Concomitantly, we observed upregulation of Sox4 mRNA and protein expression levels in the PNS of three different models of demyelinating neuropathies (Pmp22, Lpin1, and Scap KOs). To better characterize the molecular function of Sox4, we used a viral vector allowing Sox4 overexpression in cultured Schwann cells and in neuron-Schwann cell co-cultures. In parallel, we generated two transgenic lines of mice in which the overexpression of Sox4 is driven specifically in Schwann cells by the Myelin Protein Zero gene promoter. The preliminary data from these in vitro and in vivo experiments show that overexpression of Sox4 in PNS causes a delay in progression of myelination thus indicating that Sox4 acts as a negative regulator of Schwann cell myelination.
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.